Consecutive power residues or nonresidues
HTML articles powered by AMS MathViewer
- by J. R. Rabung and J. H. Jordan PDF
- Math. Comp. 24 (1970), 737-740 Request permission
Abstract:
For any positive integers $k$ and $l$, A. Brauer [1] has shown that there exists a number $z(k,l)$ such that, for any prime number $p > z(k,l)$, a sequence of $l$ consecutive numbers occurs in at least one $k$th-power class modulo $p$. For particular $k$ and $l$, one is sometimes able to find a least bound, $\Lambda *(k,l)$, before, or at which, the first member of such a sequence must appear. In this paper, we describe a method used to compute $\Lambda *(8,2)$ and $\Lambda *(3,3)$.References
-
A. Brauer, "Γber Sequenzen von Potenzresten," S.-B. Preuss. Akad. Wiss. Phys. Math. Kl., v. 1928, pp. 9β16.
- W. H. Mills, Characters with preassigned values, Canadian J. Math. 15 (1963), 169β171. MR 156828, DOI 10.4153/CJM-1963-019-3
- M. Dunton, Bounds for pairs of cubic residues, Proc. Amer. Math. Soc. 16 (1965), 330β332. MR 172838, DOI 10.1090/S0002-9939-1965-0172838-9
- D. H. Lehmer, E. Lehmer, W. H. Mills, and J. L. Selfridge, Machine proof of a theorem on cubic residues, Math. Comp. 16 (1962), 407β415. MR 162379, DOI 10.1090/S0025-5718-1962-0162379-2
- D. H. Lehmer and Emma Lehmer, On runs of residues, Proc. Amer. Math. Soc. 13 (1962), 102β106. MR 138582, DOI 10.1090/S0002-9939-1962-0138582-6
- D. H. Lehmer, Emma Lehmer, and W. H. Mills, Pairs of consecutive power residues, Canadian J. Math. 15 (1963), 172β177. MR 146134, DOI 10.4153/CJM-1963-020-4
- R. G. Bierstedt and W. H. Mills, On the bound for a pair of consecutive quartic residues of a prime, Proc. Amer. Math. Soc. 14 (1963), 628β632. MR 154843, DOI 10.1090/S0002-9939-1963-0154843-X
- John Brillhart, D. H. Lehmer, and Emma Lehmer, Bounds for pairs of consecutive seventh and higher power residues, Math. Comp. 18 (1964), 397β407. MR 164923, DOI 10.1090/S0025-5718-1964-0164923-X
- R. L. Graham, On quadruples of consecutive $k$th power residues, Proc. Amer. Math. Soc. 15 (1964), 196β197. MR 158855, DOI 10.1090/S0002-9939-1964-0158855-2
- J. H. Jordan, Pairs of consecutive power residues or non-residues, Canadian J. Math. 16 (1964), 310β314. MR 161824, DOI 10.4153/CJM-1964-030-6
Additional Information
- © Copyright 1970 American Mathematical Society
- Journal: Math. Comp. 24 (1970), 737-740
- MSC: Primary 10.06
- DOI: https://doi.org/10.1090/S0025-5718-1970-0277469-8
- MathSciNet review: 0277469