Lower bounds for the disk packing constant
HTML articles powered by AMS MathViewer
- by David W. Boyd PDF
- Math. Comp. 24 (1970), 697-704 Request permission
Abstract:
An osculatory packing of a disk, $U$, is an infinite sequence of disjoint disks, $\{ {U_n}\}$, contained in $U$, chosen so that, for $n \geqq 2$, ${U_n}$ has the largest possible radius, ${r_n}$, of all disks fitting in $U\backslash ({U_1} \cup \cdots \cup {U_{n - 1}})$. The exponent of the packing, $S$, is the least upper bound of numbers, $t$, such that $\sum {r_n^t} = \infty$. Here, we present a number of methods for obtaining lower bounds for $S$, based on obtaining weighted averages of the curvatures of the ${U_n}$. We are able to prove that $S > 1.28467$. We use a number of well-known results from the analytic theory of matrices.References
- H. S. M. Coxeter, The problem of Apollonius, Amer. Math. Monthly 75 (1968), 5–15. MR 230204, DOI 10.2307/2315097
- H. S. M. Coxeter, Loxodromic sequences of tangent spheres, Aequationes Math. 1 (1968), 104–121. MR 235456, DOI 10.1007/BF01817563 G. H. Hardy, J. E. Littlewood & G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1934.
- K. E. Hirst, The Apollonian packing of circles, J. London Math. Soc. 42 (1967), 281–291. MR 209981, DOI 10.1112/jlms/s1-42.1.281
- Alston S. Householder, The theory of matrices in numerical analysis, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1964. MR 0175290
- Z. A. Melzak, Infinite packings of disks, Canadian J. Math. 18 (1966), 838–852. MR 203594, DOI 10.4153/CJM-1966-084-8
- Z. A. Melzak, On the solid-packing constant for circles, Math. comp. 23 (1969), 169–172. MR 0244866, DOI 10.1090/S0025-5718-1969-0244866-8 H. Wielandt, Topics in the Analytic Theory of Matrices, Lecture Notes, University of Wisconsin, 1967.
- John B. Wilker, Open disk packings of a disk, Canad. Math. Bull. 10 (1967), 395–415. MR 215198, DOI 10.4153/CMB-1967-038-2
Additional Information
- © Copyright 1970 American Mathematical Society
- Journal: Math. Comp. 24 (1970), 697-704
- MSC: Primary 52.45; Secondary 40.00
- DOI: https://doi.org/10.1090/S0025-5718-1970-0278193-8
- MathSciNet review: 0278193