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Triangular Elements in the Finite Element Method

By James H. Bramble and Milos Zlámal

Abstract. For a plane polygonal domain Q and a corresponding (general) triangulation

we define classes of functions pmix, v) which are polynomials on each triangle and which

are in C^'CQ) and also belong to the Sobolev space ^""^'(n). Approximation theoretic

properties are proved concerning these functions. These results are then applied to the

approximate solution of arbitrary-order elliptic boundary value problems by the Galerkin

method. Estimates for the error are given. The case of second-order problems is discussed

in conjunction with special choices of approximating polynomials.

1. Introduction. The classical Ritz and Galerkin method has several advantages

over the finite-difference method. Nevertheless two things have prevented its more

extensive use: 1. The practical construction of the basic functions in more dimensions

was possible only for some simple domains. 2. Even for these domains the procedures

can be highly unstable.

The finite element method is nothing else than the Ritz or Galerkin method using

special trial functions. The first idea goes back to Courant [9] who suggested tri-

angulating the given domain and using functions which are linear on each triangle

as trial functions for solving boundary value problems of the second order. This

idea was rediscovered by the engineers and developed, originally as a concept of

structural analysis, into a method called the finite element method (see Turner,

Clough, Martin and Topp [15] and the references in Zienkiewicz [18]). Practical

experience, the large amount of numerical results and the first theoretical results

show that the finite element method removes the above mentioned shortcomings

of the classical Ritz and Galerkin method.

One feature of the procedures described by the engineers consists in introducing

higher degree polynomials for interpolation of the solution on the given element.

Some procedures of this kind for triangular elements were proposed and justified

by the second of the authors [19]. For fourth-order equations the trial functions

used are polynomials of the fifth degree.1 The results and the method of [19] were

generalized by Zenisek [17]. He proposed to use polynomials of the degree Am + 1

introduced later in this paper2 and he justified the method for m = 2, 3 (the case

m = 1 being justified in [19]).
The method of this paper differs completely from the method of [19]. A lemma

about linear functionals on W™ by Bramble and Hubert [7] allows us to get general

results for any m. We prove a general interpolation theorem and apply it to K-elliptic
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1 Almost simultaneously this procedure was described and applied to bending of plates by

Bell [3] and [4], Visser [16], Bosshard [6] and Argyris, Fried, Scharpf [2].
'As a matter of fact, he also introduces polynomials of the degree 4m + 2, 4m + 3 and

Aim + 1). We restrict ourselves to the case of polynomials of the degree 4m + 1. The others are

easy to deal with in the same way.
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810 JAMES H. BRAMBLE AND MILOS ZLÁMAL

boundary value problems of arbitrary order. The seminorm used in this paper for

the discretization error is more appropriate than that used in [19].

2. Interpolation Polynomials on Triangles. To define the interpolation poly-

nomials introduced by Zenisek [17] we denote by P, (j = 1, 2, 3) the vertices of a

triangle T,3 by (x„ y¡) the coordinates of P¡, by P0 the center of gravity of T, by /,•

the sides of T, by v, the normals to /,-. We divide every side /,■ in r -f 1 equal parts

(r = 1, 2, • • •) by the points ß<'-" (/ - 1, 2, 3, p - 1, • • • , r).
Now a polynomial pm(x, y) in two variables of the degree Am + 1 (m = 0, 1, • • •)

has (2m + l)(4m + 3) coefficients. Hence we cannot prescribe more than (2m + 1)

•(Am + 3) conditions for such a polynomial. Let us prescribe the following values:

(1) dYYP,),* J = 1,2,3,    |i| ^ 2m,

(2) 3>-ft?/P'r)) t y =1,2, 3,    p=l, ••• ,r,    r=l. •••,«.
dp,

(3) D'pm(P0), |/| g  m - 2.

We must add that we leave out the values (2) and (3) if m = 0 and m = 0, 1,

respectively. Thus, p0(x, y) is a linear polynomial determined by the values of u(x, y)

at the vertices of T and pjjx, y) is the polynomial introduced in [19, p. 404] and in

the papers quoted in footnote 1.

The importance of the polynomials pm(x, y) follows from the property proved

in [17] which we formulate in this way: Suppose the values of the form (1), (2), (3)

determine uniquely a polynomial pJY, y) of the degree not greater than Am -f- 1.

Let ß be a polygonal domain triangulated by triangles {T^^ and let values of

the form (1), (2), (3) be prescribed at every vertex of the triangulation, at every point

Qi',r) and at every center of gravity. Then the function vix, y) which on every Tk

is equal to a polynomial p^fx, y) defined in the way just described belongs to Cim)Çï).

Later we shall construct trial functions for the Galerkin method by means of the

polynomials p„ix, y). First, we must, of course, prove the existence and uniqueness

of pmix, y).

Theorem 1. There exists exactly one polynomial pjx, y) of the degree not greater

than Am + 1 assuming the values (1), (2), (3).

Proof. The assertion is trivial for m = 0, hence we consider m^ 1. It is sufficient

to prove that if

(4) D'pJÍPa) = 0,        j = 1, 2, 3,    \i\ = 2m,

(5) -£^fi-*=0,        j= 1,2,3,    p-1. •••,/•,     r=\,---,m,

(6) flWo) = 0,        |/| = m- 2,

and pm(x, y) is a polynomial of a degree not greater than Am + 1 then p„ix, y) = 0.

(That is, the linearity of (1), (2) and (3) permits the uniqueness of their solution to

imply existence of a solution.)

« At the same time T means the interior of T; it will always be clear what meaning of T is

necessary to be taken.
« Here / = (/i, ¿,), |/| = ii + h, D'u = dmu/dx^dy':
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The derivatives drpm/dv'f (r = 0, • • • , m, j = 1, 2, 3) are Hermite polynomials

(see, for instance, [5]) in one variable on the corresponding sides of the triangle T

which, with respect to (4) and (5), assume homogeneous boundary values. Therefore

they are identically equal to zero on the sides of T. Using the reasoning of the proof

of Theorem 1 in [17] we find out that

(7) D'Pmix, y) \¡T = 0,        |/| S m.

Now let us consider the transformation

ig. x = x(£, r¡) = xx + ix2 — *i)£ + (x3 — Xx)ri,

y = yi%, v) — yx + Cva — yx)£ + (y3 — yf)v

and the polynomial pj£, tj) = /?„,[*(£, y), yi£, r¡)]. The equations (8) map T onto

the triangle T¡ with vertices P,(0, 0), P2(l, 0), P3i0, 1). The points g|p,,) are mapped

on the points Q¡"r) which again divide the new sides l, into r + 1 equal parts and

P0 is mapped on the center of gravity Paih |) of the triangle Ti. From (7) and (6)

it follows that

(9) D'pJk, v) lar, = 0,        ||| á m,

(10) D'piPo) = 0,        |/| = m - 2,

(if we use the symbol D applied to functions of £ and r¡ we always mean a derivative

with respect to £ and -q; thus I>*pm(£, r¡) = dUipm(£, i)/(3£"óy*))- A consequence

of (9) is that drpmi£, 0)/dvr <= 0 for 0 á í Û 1, r =■ 0, • • •, m. Therefore £„(£, r¡) is

divisible by ij"+1. Similarly, one can show that p„(£, n) is divisible by (1 — £ — 7;)m+1

and by £™+1. Hence, if m = 1 it must be that p"j(£, 17) = 0, and consequently px(x, y) = 0,

and if m ^ 2

PJk, v) = [hO - I - v)T+1Qi^, v),

where ô(£, rj) is a polynomial of the degree not greater than m — 2. Now it is sufficient

to use (10). Since [£ij(l  —  £ — r?)]j_, .1/3 ^ Owe get

ö'ß(io) = 0,        \i\= m-2,

and since ö(£, 17) is a polynomial of the degree not greater than m — 2 it follows

that £>(£, i?) = 0, hence pj£, i)) m 0 and /?„(x, j>) = 0.

Next what we need is some estimate of the error arising when we approximate

a function w(x, y) E CK2m\T) by a polynomial pmix, y). We will say that pJY, y) is

the interpolation polynomial corresponding to uix, y) if

(11) D'pJLP,) = D'uiP,), j = 1, 2, 3,    ¡i| á 2m,

(12) a'*.©^")/*; = druiQYT))/ov],

j = 1, 2, 3,    p = 1, ••• ,r,     r = 1, ••• , m,

(13) D'p^Po) = D'u(P0),        \i\ £ m-2.

To get the estimate we make use of a lemma by Bramble and Hubert [7]. First we

introduce some notation. By W2k)iQ) we denote the Hubert space of all functions

which together with their generalized derivatives up to the kth order belong to L2(Q).
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The norm is given by

IMI2.0 - È MÎ.O.    where    \u\î,a =   £   ||Z>'iC«o.
1-1 lil-l

Lemma.5 Let übe a bounded domain in EN with diam (Q) = 1. Assume that O satisfies

the ordinary cone condition (see [1]). Let F(u) be a bounded linear functional on W{2\\T),

\Fiu)\ g Cx ||«|U,q,

and let Fiq) = 0 for every polynomial q of the degree less than k. Then there exists a

constant C2 depending on the cone condition only such that

(14) |F(n)| è CxC2 \u\k.a

for all u E  W(2k)(Q).

Theorem 2. Let ufx, y) E W™(T) where 2m + 2 = k g Am + 2. Let pn(x, y)

be the interpolation polynomial corresponding to u(x, y). Then, for 0 á « S i,

ir

(15) H»   -   Pmlln.r   g    ,in      ,„ + ,. C*~"   \u\k,T,

where the constant K does not depend on the triangle T and the function u and where a

is the smallest angle and c is the length of the greatest side of T.

Proof. We denote by a — ß = y the angles of the triangle T and we choose the

notation of the vertices such that a lies at P„ ß at P2 and y at Ps. The lengths of

the sides are denoted by a, b, c, a being the smallest and c the greatest. As a + b > c

we have b > \c. The area of T is equal to one half of |J| where / is the Jacobian

of the transformation (8) so that

l/r-r-4— <T-T—
be sin a      c  sin a

For the inverse transformation to (8) we easily find out that

2
(16)

c sin a

Let us denote w(x, y) = u(x, y) — pm(x, y) and consider the function «>(£, r>) =

w[x(£, v), X?. v)]- The derivatives D*i!)(£, rj) are linear combinations of the derivatives

Diw(x, y) and using (16) we easily obtain

(17) \WLr^^-y\Jr\HLr,

Here Kx is a constant which does not depend on T and the functions considered

(in the sequel we shall denote such constants by Kx, K2, •••).

Now to get an estimate for ||ts||„,r, we apply the Lemma. Let us consider the

linear functional Fifi) = (fi — pm, v)„,T, on W{2k)(Tl) where (W, v\T, means the scalar

product in W2n)(T¡) and v is an arbitrary function from W^CT,). If ß(£, r¡) is a poly-

nomial of the degree less than k then u(x, y) is also a polynomial of the degree less

6 Actually, it is true for more general spaces W{vk) (ß) and the formulation introduced here

differs a little from the formulation introduced in [7].
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than k. For k ¿ Am + 2 it follows by Theorem 1 that u(x, y) — pJix, y) = 0, hence

«(£. v) - PÁí, v) = 0 and F(ö) = 0. Further,

\F(Ü)\ á IMU.ft Hfl-A.IU.i-. ̂  \\v\\„,T, {llfilkr, + ||A.IU.r,|.

Assume we succeed in proving

08) llA.IL.r.  ^7-7T^\\ü\\k,Tx.
(.s m a)

Then

\W\ £ ^yS IWU.T, HfllU.r,

and applying the Lemma (actually in our case diam (Í2) = diam (7\) = y/2; however

obviously (14) is also true with C2 being an absolute constant) we have

|IW|S£^IMU.r.|flU.r..

Choosing v = ü — pm we get

H« - a."-* * ^r|ßk-

From (17) it follows

II« - P.IU.r = (sin a)m+nC" 'y'1/2 'ß'*■T,

and since

|fl|».r, = Ksc" \Jf1/2 \u\k,T

the final result is the estimate (15).

To prove (18) we remark that the polynomial pj£, v) is, according to Theorem 1,

uniquely determined by the values

rfpjP,),        j = 1, 2, 3,    |i| ^ 2m,

drpmiQYT))/dy%        j= 1,2,3,    p=l,...,r,     r-1, •••,*!,

Z)*'(Po), I /| è m - 2.

If we order these values in some way and denote by a, (j = 1, • • • , N0 = (2m + 1)

•(Am + 3)), it obviously holds that pm(£, -f) = 2/r-i ^^(k v)> where r,(£, r;) are poly-

nomials such that from the above-mentioned N0 values one of their values is equal to 1

and the others are zero. Hence, the polynomials r,(£, tj) as well as their derivatives

of an arbitrary order are bounded by absolute constants and it is sufficient to prove that

(19) i.,, * ^ nan,.,..

Now from (11) and (13) it follows immediately

(20) D'Pm&i) =  D'üiPi),        j = 1, 2, 3,    M g 2m,

D'pm(P0) = D'üiPo),        |i| á m - 2,
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so that for these values we get (19) by means of the Sobolev lemma (actually,x(19) is

true even without the factor l/(sin a)m).

To prove (19) for the remaining values we first notice the following formula.

Let the direction / make an angle <b with the positive £-axis and let v be the direction

perpendicular to /. Let r be a direction making an angle « with the positive £-axis

and let djiP)/dr = 0. Then

(21) dfiP)/dv = -<rdfiP)/dl,        <r = cot g(u - <b)

(the Eq. (21) follows from the formula df/dr = cos (w — <¿>) df/dl + sin (w - tb)df/dv).
Further we notice that the condition (12) is just the condition

d'pmiQYr))/dY = d'üiQY'^/dY,

where r, (j = 1, 2, 3) are certain directions which are easy to find. Apply now (21)

to / = p„ — ü and to / = ljt r = r,-. By elementary calculations, which we leave

out, we get

(22) SA-tól1-") _ dñjQYu) _,_ vf BujQY")    0j BPJQ?-") t
difj dvj dl,- dl,-

where

i    i       |(a:2 — Xi)jx* — x,) + (y2 — y,)jy3 — y,)\ .    .      c" — b%
Wx\ =  --j- ,        F2I = —t— ,

1    ,       |(x2 — x,)jx3 — x,) + (v2 — y,)jy3 — y¡)\
ka I =  --¡2-L-

a, and o3 are bounded by absolute constants:

h| á bc/c2 g 1,        |<r3| = bc/b" < 2,

whereas a2 is not bounded by an absolute constant.6 However,

|<r2| = (c - b)ic + b)¡a   < 2ac/a2 g 2/sina.

Since p„ is a Hermite interpolation polynomial in one variable on the sides of 7\

which is determined by the values (20) it follows from (22) by means of the Sobolev

lemma that

dpjQY'")
dû, «Ikr..

Sin a

In general, we get

d'pJQ('-r))

üVf

9 f l|w||t.r,,       r = 1, ••• , m,
(sin a)

if we proceed by induction and use the formula

d'HP) =       ^ (r\ a   d'fiP)

which holds if d'1(P)/dT   =  0.

• There are triangles for which (c* — bt)/a* ä l/2sin a.
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Remark. In a similar way one can prove

max \D'iu - Pm)\ = *        | J\~1/2 c*""1 |«U.r
T (sin a)

if

2m + 2 ¿ k g Am + 2, |/| g A: - 2.

3. Application to 7-Elliptic Boundary Value Problems. Let Ü be a bounded

simply or multiply connected domain in E2 with a boundary r consisting of a finite

number of polygons r, (J' = 0, 1, • • • , s); I\, • • • , r. lie inside of r0 and do not

intersect. This assumption enables one to triangulate Í2. Let F be a Hubert space

such that

W(Y(Ü) C  V C fVYiÜ),

with the norm induced by W2n)(ü). Here, W2n)(£2) is the completion with respect

to the norm ||- ||n7 of functions from C(°'(0) with compact support in 0. Let a(u, v)

be a bilinear form continuous on V X V and F-elliptic, i.e., a mapping (w, v) —►

o(m, u) from F X F into the field of complex numbers which is linear in u, antilinear

in v and satisfies the conditions of boundedness and coerciveness

(23) |a(K,u)| = M \\u\\n |HI, ,      Vu.oEV,    M = const > 0,

(24) Re a(o,v) =■ a \\v\\l ,      Vu E   V,    a = const > 0.

Finally, let Iajd) be an antilinear functional continuous on V. Under these conditions

there exists just one u E  V such that

(25) a(u, v) = Lip),       Vv E  V,

(see Lions and Magenes [13]).

We shall approximate the problem (25) by the Galerkin method (see Céa [8])

using the following finite-dimensional subspaces FJ of V. We triangulate Q, i.e.,

we cover Ü by a finite number of arbitrary triangles such that any two triangles are

either disjoint or have a common vertex or a common side. To every triangulation

we associate two parameters: h, #. h is the largest side and ô the smallest angle of

all triangles of the given triangulation. In the sequel we assume that as h —* 0, #

remains bounded away from zero,

(26) â^â0> 0.

Now V\ is the finite-dimensional subspace of V consisting of all functions which

on the triangles of the given triangulation are equal to polynomials pm(x, y) intro-

duced in the preceding section. Every function from V" belongs to Clm)(ñ) and,

at the same time, to !T¿m+1)(Q).

Let us consider the problem of finding w™ such that

(27) a(uT, v) = L(v),       Vv E  K-

Theorem 3. Let n ^ m + 1. Under the assumptions (23), (24) and (26) there exists

» In this and the last section we write 11 • 11„ instead of 11 • | |„,o and | • |„ instead of | • |„,n.
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fust one umkE Vmh satisfying (27) and

(28) \\u- nr|U-»0    as   A->0.

Proof. It is an immediate consequence of the theorem by Céa about the Galerkin

method (see [8, p. 363, Théorème 3.1]) and of Theorem 2 proved in Section 2. We

must show that the subspaces Vmk have the following property of density: there is

a subspace 13 C V which is dense in V and a family of linear operators r™ from 13

into V\ such that

(29) | |c  -iîb|U-»0,       VvEV    as   A -> 0.

For 13 we choose functions from F belonging to ^"(fi) with 2m + 2 i£ /: ;£ 4m + 2.

As k = 2m + 2 it follows by Sobolev's lemma that 13 C Ci2m)(8). r^v is then the

function which on every triangle of the corresponding triangulation is equal to the

interpolation polynomial pm(x, y) corresponding to vix, y). According to (15) and (26)

we have

I Id - /îb||î.r á  ¿r1oA2<*-") Mï.r.

Hence,

(30) ||d-/•:«?!U g tfu M*A*"

and (29) follows.
Theorem 3 proves only the convergence of the finite element method. Of course,

we did not ask more than that the solution u of the boundary value problem (25)

of the 2nth order belongs to W2n)(iT). If we suppose more about the smoothness

of u we get an asymptotic estimate of the rate of convergence:

Theorem 4. Suppose that the form aiu, v) is Hermitian. Let the assumptions of

Theorem 3 hold and let

u(x, y) E W2\Q),        2m + 2 ■= k -g. Am + 2.

Then

öd ii«- «m„á *i«u**-".
where the constant K does not depend on the triangulation and on the solution u.

Proof. We use a lemma by Céa [8, p. 365, Proposition 3.1]. According to the

inequality 3.14 of this lemma

II«- iff|U á (M/à)1" ||« - rr«||.

holds. As m G rV(2h)(ü) we can set v = u in (30) and the proof is finished.

In case n = 2, m = 1, (31) gives

II« - i¿||, ^ K \u\kh"-2,       A g k =g 6,

for u E rV2k)(Q). The highest order of accuracy is attained for k = 6,

II«- «III, ̂   K\u\&Y.

This result is a generalization of the result of [19] where instead of |m|„ the seminorm

Ma = supQ \D'u\, \i\ = 6, is used. In the same way we get for n = 3, m = 2 and

n = 4, m = 3 the generalization of the results of [17].
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4. Some Special Cases. 1. To get the asymptotic estimate (31) we had to assume

a greater smoothness of the solution u(x, y) than that guaranteed by the conditions

(23) and (24) which, on the other hand, are sufficient for the uniqueness and exis-

tence of u(x, y). In one case we need not impose any additional condition on the

smoothness of the solution and yet we obtain an asymptotic error estimate, even in

terms of data only. Consider, namely, the Dirichlet problem

(32) L„ . - ±YY<'ft) + °» = *
on a convex polygon il. Let us assume that

(33) aik(x, y) E Ct0'"(Q),        a(x, y), fix, y) E L2(ü)        (j, k = 1,2),

that the operator Lu is uniformly elliptic,

2 2

\Yj  ajk(x, y)££k = a0 X) £i>       «o > const > 0,
l.k-l i-l

and that a(x, y) ^ 0. Then the form a(u, v) corresponding to the above Dirichlet

problem,

a(u, v) =   /
Ja

u£,a" tk ë + auv\dx dy>

is ff'2"(fi)-elliptic. According to a theorem of Kadlec [11] the solution u{x, y) belongs

to rV'Yiü) and

(34) IMI, = CWnU.m,

where the constant C depends only on the coefficients of the operator Lu and on

the domain fi. Actually, the result is stated in [11] for the equation

However, if we write (32) in the form L0u = —au + fv/e see that the right-hand

side belongs to L2(fi). By the theorem of Kadlec

||«||, Ú C ||-«« + /|U,(0) =S CiKl2 \\u\\x + ll/lkw).

As aiu, u) = (Lu, u)L, for u E W22)(Q) C\ fv'Y(U) it follows from the IF2n(0)-ellip-

ticity of a(u, v) that ||«||, á (ÍAOU/IU,«». Hence (34) is true. Now the assumptions

of Theorem 4 are satisfied (n = l, m = 0, k = 2) and we have the following.

Theorem 5. Let 0 be a convex polygon and suppose that the real coefficients and

the right-hand side of Eq. (32) satisfy (33). Further, let Lu be uniformly elliptic and

let a(x, y) ^ 0. Then

(35) ||« - lall, 2£ C ||/|U,<mA,

where the constant C depends on the coefficients of Lu and on the domain fi only.

Using an argument similar to that of Nitsche [14] we can obtain the additional

result

(36) ||«- hÜIU.,0, = CA2||/IU,(fl)-
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Remark. The estimate of the form (36) is also given in the paper by L. A. Oganesjan,

P. A. Ruchovec: "Investigation of the convergence rate of variational-difference

schemes for elliptic second order equations in a two-dimensional domain with a

smooth boundary," Z. Vylisl. Mat. i Mat. Fiz., v. 9, 1969, 1102-1120. (Russian)

The proof is as follows: Write

u              0|,                             (« —  «t, ip)
II«   -   K»||o   =        SUP      -TTTTj-

Now let <j) satisfy

afp.tp) = iv, *)„,       VbG ÍV?\Q).

Then, as in (34), we have ||*||2 = C||*||0. Hence,

(37) ||« - HÎHo á Csup \a(u - «!. *)|/||*|U.

But

a(u — «», <b) = aiu — uk,<p — $),       V* G   K ■

Hence,

(38) \a(u - u°k,<b)\ g M H« - ul\\x ||0 - <?||,.

Choose * such that

(39) ||0 -^11, g  K» \\<b\\2h.

Then (37), (38) and (39) imply

ll«- «Su. á KxxhWu- «2||,.

This together with Theorem 5 yields the result.

2. In [19] there was also introduced a cubic polynomial pix, y) determined by

ten values

P(Pa),     dpiPJ/dx,      dpiP,)/dy,      piPo),       j= 1,2,3.

This element can be used for solving second-order boundary value problems. It is

easy to show, in the same way as Theorem 2 was proved, that

l|u " p]Lt - \¿rck~n Mk'T'    * = 3>4' n = k'

if « G IV^iT). For the corresponding finite element procedure (again under the

assumptions (23), (24) and (26)) it follows first that it converges in the ||-1|, norm,

and secondly that

II« - «*||i á  K\u\khk-\        k = 3, 4,

if « G W2k)iß). For k = A this result is a generalization of the estimate (13) in [19].

3. The polynomial />,(x, y) is a 21-degree-of-freedom element. However, the

values 3/?i(ôi1,1>)/d"i (j = 1» 2, 3) are not necessary in applications. Bell proposed

in [3] (also Goël in [10]) an 18-degree-of-freedom element and applied it to bending

of thin plates. We get it from p¡ix, y) if we eliminate the three above mentioned

values by imposing on px(x, y) the condition that dpx/dv, (j — L 2, 3) be cubic
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polynomials on the corresponding sides of T. In general, dpx/dv, is a polynomial

of the fourth degree in one variable on the side /, of T and it is easy to see that the

above condition determines uniquely the values dp1(Q^1,1))/dv/ as linear combina-

tions of the remaining 18 values

D'pxiP,),        j= 1,2, 3,    |/| = 2.

We denote this 18-degree-of-freedom element by q(x, y). If we inspect the proof

of Theorem 2, we easily find out that an estimate corresponding to (18) is again

true in case of the element q(x, y) and that the only change is that the functional

F vanishes for polynomials of the degree less than 5, whereas, in case of p¡(x, y) it

vanishes for polynomials of the degree less than 6. We have

||« - q\U.T á (sin ay ck~" \u\*.t,        n = 1,2,    k = A, 5,

if « G W2k)(T). For the corresponding finite element procedure (again under the

assumptions (23), (24) and (26)), it follows first that it converges in the norm ||-||,

and ||-lU, respectively, and secondly that

\\u- uk\\ng K\u\khk-\       «=1,2,   k = 4, 5,

if « G W2k)(i~í). Thus, for bending of thin plates the highest order of accuracy is

the third order.
Similarly one can generalize the results of [20] where, by eliminating the value

p(Po) from the cubic element p(x, y), there was constructed a 9-degree-of-freedom

element.

4. For practical applications it is desirable (see [20, p. 395]) that as many param-

eters determining the polynomials as possible are prescribed at the vertices only. In

[12] it is remarked that in the case of polynomials of degree 4m + 1 and 4m + 3

(see footnore 2) the parameters prescribed on the sides of the triangle can be elimi-

nated by imposing on the polynomials the condition that the normal derivatives of

the kth order be polynomials of degree n — 2k along the sides of the triangle. For

the corresponding finite element procedure one can easily prove that

II«-»II. S ¿T|«UA*-

for 2m + 2 g k ^ 3m + 2 and 2m + 3 = k ^ 3m + 4, respectively, if n ^ m +

1 and m G W?\V).
It is also possible to eliminate the parameters prescribed at the center of gravity

by imposing some restrictions on the polynomials. However, in this case a better

practical way is to retain them and to use the method of condensation of internal

parameters (see [21] or [22]).
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