On Hadamard matrices constructible by circulant submatrices
HTML articles powered by AMS MathViewer
- by C. H. Yang PDF
- Math. Comp. 25 (1971), 181-186 Request permission
Corrigendum: Math. Comp. 28 (1974), 1183-1184.
Corrigendum: Math. Comp. 28 (1974), 1183-1184.
Abstract:
Let ${V_{2n}}$ be an H-matrix of order 2n constructible by using circulant $n \times n$ submatrices. A recursive method has been found to construct ${V_{4n}}$ by using circulant $2n \times 2n$ submatrices which are derived from $n \times n$ submatrices of a given ${V_{2n}}$. A similar method can be applied to a given ${W_{4n}}$, an H-matrix of Williamson type with odd n, to construct ${W_{8n}}$. All ${V_{2n}}$ constructible by the standard type, for $1 \leqq n \leqq 16$, and some ${V_{2n}}$, for $n \geqq 20$, are listed and classified by this method.References
- L. D. Baumert and Marshall Hall Jr., Hadamard matrices of the Williamson type, Math. Comp. 19 (1965), 442β447. MR 179093, DOI 10.1090/S0025-5718-1965-0179093-2
- Marshall Hall Jr., Combinatorial theory, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1967. MR 0224481
- Herbert John Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, No. 14, Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York, 1963. MR 0150048
- John Williamson, Hadamardβs determinant theorem and the sum of four squares, Duke Math. J. 11 (1944), 65β81. MR 9590
- C. H. Yang, On designs of maximal $(+1,\,-1)$-matrices of order $n\equiv 2(\textrm {mod}\ 4)$, Math. Comp. 22 (1968), 174β180. MR 225476, DOI 10.1090/S0025-5718-1968-0225476-4
- C. H. Yang, On designs of maximal $(+1,\,-1)$-matrices of order $n\equiv 2(\textrm {mod}\ 4)$. II, Math. Comp. 23 (1969), 201β205. MR 239748, DOI 10.1090/S0025-5718-1969-0239748-1
- L. D. Baumert, Hadamard matrices of orders $116$ and $232$, Bull. Amer. Math. Soc. 72 (1966), 237. MR 186567, DOI 10.1090/S0002-9904-1966-11481-7
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Math. Comp. 25 (1971), 181-186
- MSC: Primary 05.25
- DOI: https://doi.org/10.1090/S0025-5718-1971-0288037-7
- MathSciNet review: 0288037