On the effects of scaling of the Peaceman-Rachford method
HTML articles powered by AMS MathViewer
- by Olof B. Widlund PDF
- Math. Comp. 25 (1971), 33-41 Request permission
Abstract:
The alternating direction method of Peaceman and Rachford is considered for elliptic difference schemes of second order and with two independent variables. An earlier result of the author’s on the rapid convergence of multi-parameter noncommutative problems is described and a connection is established between that result and theorems on optimal scaling of band matrices. Simple algorithms to decrease the condition number and increase the rate of convergence are discussed.References
- Garrett Birkhoff and Richard S. Varga, Implicit alternating direction methods, Trans. Amer. Math. Soc. 92 (1959), 13–24. MR 105814, DOI 10.1090/S0002-9947-1959-0105814-4 B. L. Buzbee, G. H. Golub & C. W. Nielson, The Method of Odd/Even Reduction and Factorization with Application to Poisson’s Equation, Stanford Computer Science Department Report, 1969.
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- Jim Douglas Jr., Alternating direction methods for three space variables, Numer. Math. 4 (1962), 41–63. MR 136083, DOI 10.1007/BF01386295
- G. E. Forsythe and E. G. Straus, On best conditioned matrices, Proc. Amer. Math. Soc. 6 (1955), 340–345. MR 69585, DOI 10.1090/S0002-9939-1955-0069585-4
- P. R. Garabedian, Partial differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0162045
- Gene H. Golub, Comparison of the variance of minimum variance and weighted least squares regression coefficients, Ann. Math. Statist. 34 (1963), 984–991. MR 155402, DOI 10.1214/aoms/1177704021
- Willis H. Guilinger Jr., The Peaceman-Rachford method for small mesh increments, J. Math. Anal. Appl. 11 (1965), 261–277. MR 183125, DOI 10.1016/0022-247X(65)90086-7
- James E. Gunn, On the two-stage iterative method of Douglas for mildly nonlinear elliptic difference equations, Numer. Math. 6 (1964), 243–249. MR 169387, DOI 10.1007/BF01386072
- R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis, J. Assoc. Comput. Mach. 12 (1965), 95–113. MR 213048, DOI 10.1145/321250.321259 W. Kahan & J. Varah, Two Working Algorithms for the Eigenvalues of a Symmetric Tridiagonal Matrix, Stanford Computer Science Department Report, 1966.
- D. W. Peaceman and H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math. 3 (1955), 28–41. MR 71874
- Carl Pearcy, On convergence of alternating direction procedures, Numer. Math. 4 (1962), 172–176. MR 145677, DOI 10.1007/BF01386310
- A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math. 14 (1969/70), 14–23. MR 253546, DOI 10.1007/BF02165096
- Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502
- Eugene L. Wachspress, Iterative solution of elliptic systems, and applications to the neutron diffusion equations of reactor physics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR 0234649
- E. L. Wachspress and G. J. Habetler, An alternating-direction-implicit iteration technique, J. Soc. Indust. Appl. Math. 8 (1960), 403–424. MR 114308
- Olof B. Widlund, On the rate of convergence of an alternating direction implicit method in a noncommutative case, Math. Comp. 20 (1966), 500–515. MR 231551, DOI 10.1090/S0025-5718-1966-0231551-9
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Math. Comp. 25 (1971), 33-41
- MSC: Primary 65N10
- DOI: https://doi.org/10.1090/S0025-5718-1971-0303754-8
- MathSciNet review: 0303754