On the effects of scaling of the Peaceman-Rachford method
Author:
Olof B. Widlund
Journal:
Math. Comp. 25 (1971), 33-41
MSC:
Primary 65N10
DOI:
https://doi.org/10.1090/S0025-5718-1971-0303754-8
MathSciNet review:
0303754
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The alternating direction method of Peaceman and Rachford is considered for elliptic difference schemes of second order and with two independent variables. An earlier result of the author’s on the rapid convergence of multi-parameter noncommutative problems is described and a connection is established between that result and theorems on optimal scaling of band matrices. Simple algorithms to decrease the condition number and increase the rate of convergence are discussed.
- Garrett Birkhoff and Richard S. Varga, Implicit alternating direction methods, Trans. Amer. Math. Soc. 92 (1959), 13–24. MR 105814, DOI https://doi.org/10.1090/S0002-9947-1959-0105814-4 B. L. Buzbee, G. H. Golub & C. W. Nielson, The Method of Odd/Even Reduction and Factorization with Application to Poisson’s Equation, Stanford Computer Science Department Report, 1969.
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- Jim Douglas Jr., Alternating direction methods for three space variables, Numer. Math. 4 (1962), 41–63. MR 136083, DOI https://doi.org/10.1007/BF01386295
- G. E. Forsythe and E. G. Straus, On best conditioned matrices, Proc. Amer. Math. Soc. 6 (1955), 340–345. MR 69585, DOI https://doi.org/10.1090/S0002-9939-1955-0069585-4
- P. R. Garabedian, Partial differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0162045
- Gene H. Golub, Comparison of the variance of minimum variance and weighted least squares regression coefficients, Ann. Math. Statist. 34 (1963), 984–991. MR 155402, DOI https://doi.org/10.1214/aoms/1177704021
- Willis H. Guilinger Jr., The Peaceman-Rachford method for small mesh increments, J. Math. Anal. Appl. 11 (1965), 261–277. MR 183125, DOI https://doi.org/10.1016/0022-247X%2865%2990086-7
- James E. Gunn, On the two-stage iterative method of Douglas for mildly nonlinear elliptic difference equations, Numer. Math. 6 (1964), 243–249. MR 169387, DOI https://doi.org/10.1007/BF01386072
- R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis, J. Assoc. Comput. Mach. 12 (1965), 95–113. MR 213048, DOI https://doi.org/10.1145/321250.321259 W. Kahan & J. Varah, Two Working Algorithms for the Eigenvalues of a Symmetric Tridiagonal Matrix, Stanford Computer Science Department Report, 1966.
- D. W. Peaceman and H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math. 3 (1955), 28–41. MR 71874
- Carl Pearcy, On convergence of alternating direction procedures, Numer. Math. 4 (1962), 172–176. MR 145677, DOI https://doi.org/10.1007/BF01386310
- A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math. 14 (1969/70), 14–23. MR 253546, DOI https://doi.org/10.1007/BF02165096
- Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502
- Eugene L. Wachspress, Iterative solution of elliptic systems, and applications to the neutron diffusion equations of reactor physics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR 0234649
- E. L. Wachspress and G. J. Habetler, An alternating-direction-implicit iteration technique, J. Soc. Indust. Appl. Math. 8 (1960), 403–424. MR 114308
- Olof B. Widlund, On the rate of convergence of an alternating direction implicit method in a noncommutative case, Math. Comp. 20 (1966), 500–515. MR 231551, DOI https://doi.org/10.1090/S0025-5718-1966-0231551-9
Retrieve articles in Mathematics of Computation with MSC: 65N10
Retrieve articles in all journals with MSC: 65N10
Additional Information
Keywords:
Alternating direction implicit methods,
Peaceman-Rachford method,
elliptic of second order,
multi-parameter,
noncommutative,
separation-of-variables,
condition number,
rate of convergence,
optimal scaling
Article copyright:
© Copyright 1971
American Mathematical Society