Uniform computation of the error function and other related functions
HTML articles powered by AMS MathViewer
- by F. Matta and A. Reichel PDF
- Math. Comp. 25 (1971), 339-344 Request permission
Abstract:
Uniform methods of computation, to any required degree of accuracy, for the error and other closely related functions are given.References
- C. Chiarella and A. Reichel, On the evaluation of integrals related to the error function, Math. Comp. 22 (1968), 137–143. MR 223068, DOI 10.1090/S0025-5718-1968-0223068-4 A. Reichel, J. Quant. Spectrosc. Radiat. Transfer, v. 8, 1968, p. 1601.
- Yudell L. Luke, Integrals of Bessel functions, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1962. MR 0141801
- H. E. Salzer, Formulas for calculating the error function of a complex variable, Math. Tables Aids Comput. 5 (1951), 67–70. MR 48150, DOI 10.1090/S0025-5718-1951-0048150-3
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642 B. H. Armstrong, J. Quant. Spectrosc. Radiat. Transfer, v. 7, 1967, p. 61.
- Henry C. Thacher Jr., Computation of the complex error function by continued fractions, Blanch Anniversary Volume, Aerospace Research Lab., U.S. Air Force, Washington, D.C., 1967, pp. 315–337. MR 0211586 Y. L. Luke, The Special Functions and Their Approximations. Vol. 2, Math. in Sci. and Engrg., vol. 53, Academic Press, New York, 1969. MR 40 #2909.
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Math. Comp. 25 (1971), 339-344
- MSC: Primary 65D20
- DOI: https://doi.org/10.1090/S0025-5718-1971-0295538-4
- MathSciNet review: 0295538