Calculation of the gamma function by Stirling’s formula
HTML articles powered by AMS MathViewer
- by Robert Spira PDF
- Math. Comp. 25 (1971), 317-322 Request permission
Abstract:
In this paper, we derive a simple error estimate for the Stirling formula and also give numerical coefficients.References
- N. G. de Bruijn, Asymptotic methods in analysis, Bibliotheca Mathematica, Vol. IV, North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen; Interscience Publishers Inc., New York, 1958. MR 0099564
- John W. Wrench Jr., Concerning two series for the gamma function, Math. Comp. 22 (1968), 617–626. MR 237078, DOI 10.1090/S0025-5718-1968-0237078-4 R. Spira, Table of the Riemann Zeta Function, UMT files, reviewed in Math. Comp., v. 18, 1964, pp. 519-521. Table of the Gamma Function for Complex Arguments, Nat. Bur. Standards, Appl. Math. Series, vol. 34, 1954.
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759 N. Nielsen, Die Gammafunction. Band I. Handbuch der Theorie der Gammafunktion. Band II. Theorie des Integrallogarithmus und verwandter Transzendenten, Chelsea, New York, 1965. MR 32 #2622. R. Spira, Fortran Multiple Precision. Parts I, II, Mathematics Department, Michigan State University, East Lansing, Michigan, 1970.
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Math. Comp. 25 (1971), 317-322
- MSC: Primary 65D20
- DOI: https://doi.org/10.1090/S0025-5718-1971-0295539-6
- MathSciNet review: 0295539