Rational approximations to $\pi$
HTML articles powered by AMS MathViewer
- by K. Y. Choong, D. E. Daykin and C. R. Rathbone PDF
- Math. Comp. 25 (1971), 387-392 Request permission
Abstract:
Using an IBM 1130 computer, we have generated the first 20,000 partial quotients in the ordinary continued-fraction representation of $\pi$.References
- Daniel Shanks and John W. Wrench Jr., Calculation of $\pi$ to 100,000 decimals, Math. Comp. 16 (1962), 76–99. MR 136051, DOI 10.1090/S0025-5718-1962-0136051-9
- J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR 0087708 D. H. Lehmer, "Euclid’s algorithm for large numbers," Amer. Math. Monthly, v. 45, 1938, pp. 226-233.
- A. Ya. Khintchine, Continued fractions, P. Noordhoff Ltd., Groningen, 1963. Translated by Peter Wynn. MR 0161834
- D. E. Daykin, An addition algorithm for greatest common divisor, Fibonacci Quart. 8 (1970), no. 4, 347–349. MR 269576
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Math. Comp. 25 (1971), 387-392
- MSC: Primary 10F20; Secondary 10-04
- DOI: https://doi.org/10.1090/S0025-5718-1971-0300981-0
- MathSciNet review: 0300981