Difference analogues of quasi-linear elliptic Dirichlet problems with mixed derivatives
HTML articles powered by AMS MathViewer
- by Robert S. Stepleman PDF
- Math. Comp. 25 (1971), 257-269 Request permission
Abstract:
In this paper we consider a class of difference approximations to the Dirichlet problem for second-order quasi-linear elliptic operators with mixed derivative terms. The main result is that for this class of discretizations and bounded g (the right-hand side) a solution to the difference equations exists. We also explicitly exhibit a discretization of this type for a class of operators.References
- Lipman Bers, On mildly nonlinear partial difference equations of elliptic type, J. Research Nat. Bur. Standards 51 (1953), 229–236. MR 0064291
- J. H. Bramble and B. E. Hubbard, A theorem on error estimation for finite difference analogues of the Dirichlet problem for elliptic equations, Contributions to Differential Equations 2 (1963), 319–340. MR 152134
- Lothar Collatz, Numerische Behandlung von Differentialgleichungen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band LX, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1951 (German). MR 0043563 T. Frank, Error Bounds on Numerical Solutions of Dirichlet Problems for Quasi-Linear Elliptic Equations, Thesis, University of Texas, Austin, Tex., 1967.
- G. T. McAllister, Some nonlinear elliptic partial differential equations and difference equations, J. Soc. Indust. Appl. Math. 12 (1964), 772–777. MR 179958
- G. T. McAllister, Quasilinear uniformly elliptic partial differential equations and difference equations, SIAM J. Numer. Anal. 3 (1966), no. 1, 13–33. MR 202342, DOI 10.1137/0703002
- T. S. Motzkin and W. Wasow, On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Physics 31 (1953), 253–259. MR 0052895 R. Stepleman, Finite Dimensional Analogues of Variational and Quasi-Linear Elliptic Dirichlet Problems, Thesis, Technical Report #69-88, Computer Science Center, University of Maryland, College Park, Md., 1969.
- Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Math. Comp. 25 (1971), 257-269
- MSC: Primary 65N10
- DOI: https://doi.org/10.1090/S0025-5718-1971-0303756-1
- MathSciNet review: 0303756