## Difference analogues of quasi-linear elliptic Dirichlet problems with mixed derivatives

HTML articles powered by AMS MathViewer

- by Robert S. Stepleman PDF
- Math. Comp.
**25**(1971), 257-269 Request permission

## Abstract:

In this paper we consider a class of difference approximations to the Dirichlet problem for second-order quasi-linear elliptic operators with mixed derivative terms. The main result is that for this class of discretizations and bounded*g*(the right-hand side) a solution to the difference equations exists. We also explicitly exhibit a discretization of this type for a class of operators.

## References

- Lipman Bers,
*On mildly nonlinear partial difference equations of elliptic type*, J. Research Nat. Bur. Standards**51**(1953), 229–236. MR**0064291** - J. H. Bramble and B. E. Hubbard,
*A theorem on error estimation for finite difference analogues of the Dirichlet problem for elliptic equations*, Contributions to Differential Equations**2**(1963), 319–340. MR**152134** - Lothar Collatz,
*Numerische Behandlung von Differentialgleichungen*, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band LX, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1951 (German). MR**0043563**
T. Frank, - G. T. McAllister,
*Some nonlinear elliptic partial differential equations and difference equations*, J. Soc. Indust. Appl. Math.**12**(1964), 772–777. MR**179958** - G. T. McAllister,
*Quasilinear uniformly elliptic partial differential equations and difference equations*, SIAM J. Numer. Anal.**3**(1966), no. 1, 13–33. MR**202342**, DOI 10.1137/0703002 - T. S. Motzkin and W. Wasow,
*On the approximation of linear elliptic differential equations by difference equations with positive coefficients*, J. Math. Physics**31**(1953), 253–259. MR**0052895**
R. Stepleman, - Richard S. Varga,
*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502**

*Error Bounds on Numerical Solutions of Dirichlet Problems for Quasi-Linear Elliptic Equations*, Thesis, University of Texas, Austin, Tex., 1967.

*Finite Dimensional Analogues of Variational and Quasi-Linear Elliptic Dirichlet Problems*, Thesis, Technical Report #69-88, Computer Science Center, University of Maryland, College Park, Md., 1969.

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Math. Comp.
**25**(1971), 257-269 - MSC: Primary 65N10
- DOI: https://doi.org/10.1090/S0025-5718-1971-0303756-1
- MathSciNet review: 0303756