Minimal quadratures for functions of low-order continuity
HTML articles powered by AMS MathViewer
- by L. W. Johnson and R. D. Riess PDF
- Math. Comp. 25 (1971), 831-835 Request permission
Abstract:
An analog of Wilf’s quadrature is developed for functions of low-order continuity. This analog is used to demonstrate that the order of convergence of Wilf’s quadrature is at least $1/n$.References
- R. E. Barnhill, J. E. Dennis Jr., and G. M. Nielson, A new type of Chebyshev quadrature, Math. Comp. 23 (1969), 437–441. MR 242367, DOI 10.1090/S0025-5718-1969-0242367-4
- Ulrich Eckhardt, Einige Eigenschaften Wilfscher Quadraturformeln, Numer. Math. 12 (1968), 1–7 (German). MR 256561, DOI 10.1007/BF02170990
- David Elliott, Chebyshev series method for the numerical solution of Fredholm integral equations, Comput. J. 6 (1963/64), 102–111. MR 155452, DOI 10.1093/comjnl/6.1.102
- J. P. Imhof, On the method for numerical integration of Clenshaw and Curtis, Numer. Math. 5 (1963), 138–141. MR 157482, DOI 10.1007/BF01385885
- Philip Rabinowitz, Error bounds in Gaussian integration of functions of low-order continuity, Math. Comp. 22 (1968), 431–434. MR 226861, DOI 10.1090/S0025-5718-1968-0226861-7
- Nira Richter, Properties of minimal integration rules, SIAM J. Numer. Anal. 7 (1970), 67–79. MR 260176, DOI 10.1137/0707003
- Herbert S. Wilf, Exactness conditions in numerical quadrature, Numer. Math. 6 (1964), 315–319. MR 179941, DOI 10.1007/BF01386079
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Math. Comp. 25 (1971), 831-835
- MSC: Primary 65D30
- DOI: https://doi.org/10.1090/S0025-5718-1971-0298940-X
- MathSciNet review: 0298940