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A Predictor-Corrector Method for a Certain Class
of Stiff Differential Equations

By Karl G. Guderiey and Chen-Chi Hsu*

Abstract. In stiff systems of linear ordinary differential equations, certain elements of the

matrix describing the system are very large. Sometimes, e.g., in treating partial differential

equations, the problem can be formulated in such a manner that large elements appear only

in the main diagonal. Then the elements causing stiffness can be taken into account an-

alytically. This is the basis of the predictor-corrector method presented here. The truncation

error can be estimated in terms of the difference between predicted and corrected values in

nearly the same manner as for the customary predictor-corrector method. The question of

stability, which is crucial for stiff equations, is first studied for a single equation; as expected,

the method is much more stable than the usual predictor- corrector method. For systems of

equations, sufficient conditions for stability are derived which require less work than a de-

tailed stability analysis. The main tool is a matrix norm which is consistent with a weighted

infinity vector norm. The choice of the weights is critical. Their determination leads to the

question whether a certain matrix has a positive inverse.

1. Introduction. The present paper studies a predictor-corrector method for

stiff systems of differential equations which have the following form:

O) £ + Ay = Ay + r(x) m i<x, y),

where A is a diagonal matrix which may have some large elements, and the right-hand

side is considered as nonstiff. The operator on the left is inverted and the right-hand

side is approximated by Lagrangian interpolation polynomials at grid points. The

point at which the unknown vector is to be computed is excluded in the predictor

phase, but it is included in the corrector phase. The integration of the exponential

functions is done analytically.

In general, it would be too costly to bring a stiff system into the form (1). However,

systems of this kind arise naturally if one reduces certain partial differential equations

into a system of ordinary differential equations by a Galerkin procedure which uses

approximating functions closely related to the partial differential equation, see for

instance [1]. The ideas of usual predictor-corrector methods can be applied almost

immediately to (1). In particular, it is possible to express the truncation error in

terms of the difference between predicted and corrected values and to use this relation

for step control.

For stiff systems, the question of stability is crucial. We discuss it, first for a single

equation, and then for a system, by means of a simplified analysis. Actually, this
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latter discussion may be more interesting for the insight which it gives than for the

practical work. In practice, the step control will probably suffice. It is true that a

step control is only based on accuracy requirements, but the step selected by the

method usually lies close to the stability limit, if a step of this size is compatible

with the desired accuracy. The reason lies in the fact that instabilities lead to a

deterioration of accuracy which leads to a reduction of the step size. The method

would be /f-stable if the matrix A vanishes. Therefore, one expects to find rather

wide stability limits if A is sufficiently small.

Whenever one wants to use a large integration step for the solution of a stiff

system, one is confronted with matrix inversions. A method can be made more

effective if, within a certain interval which contains a number of integration steps,

the operator which determines the differential equation is decomposed into a constant

stiff part and a remainder. Then the matrix inversion is needed only once in each

interval. The iteration steps which would be needed to invert the complete matrix

(in our case A — A) are combined with measures for increasing the order of the

integration method; they do not appear explicitly even in the derivation of the

formulae. In Gear's work [2], this idea is expressed clearly; in other methods it would

probably appear if they are implemented in an efficient manner. In the present

procedure the matrix inversion is, of course, trivial. Inversions of (well-conditioned)

matrices will appear at values x where the functions used in Galerkin's method are

changed.

The inversion of the operator on the left of (1) leads to the equation

(2) fix) = e'A"-'yW + e~Al f ekrt<r, y(r)) dr.

This equation is the point of departure for some papers [3], [10]. If one approximates

f by a polynomial, then, after integration by parts, one is led to matrices exp(— Ah),

where h is the integration step. For a nondiagonal A, an approximation must be

used at this stage. For stability reasons, it is advisable to use a rational function for

the approximation of the exponential function [3], [4]. Here, a matrix inversion is

required too. This additional work does not occur in the present approach, for A

is a diagonal matrix. In Gear's work, an approximation of this kind is not needed

for he makes the stronger assumption that y and f, rather than f only, can be approxi-

mated by a polynomial. The difference has only minor importance; it would be felt

in regions where those contributions of the first term on the right of (2) which are

related to large elements of A are important and if A is small. But this happens only

rarely and can be handled by taking a smaller integration step.

In summary, we can say that the present paper deals with stiff systems of a form

which allows us to use a modified version of the predictor-corrector method for

nonstiff systems. One obtains a fairly simple computational procedure and a con-

venient characterization of the truncation error.

2. Integration Formulae. Let the dimension of the vector y be N, and assume

that f is approximated by a polynomial of degree k. Assume that the integration has

progressed to a station x„ = x0 + nh and that we want to compute the value of

y at xn+i. The values of y and f at equidistant stations, yn_l+) and f„_t+)- for j = 0,

1, • • • , k, have been retained in the memory. Then the prediction polynomial for
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f is obtained by Lagrangian interpolation. One finds

(3) f(x, y) ~ FpBpg(H),      t = (x - xn)/h,

where FF is an N by (k -f- 1) matrix whose j'th column is given by fn-k+i, for short

F* = (f„_t) f„_t+l) • • • , fn), Bp is a (k + 1) by (fc + 1) constant matrix, and g(£) is a

(A: + l)-dimensional vector whoseyth component is given by The value of y at

xn+1 is predicted by substituting (3) into (2) and carrying out a number of integrations

by parts. One obtains

(4) yP+1 = *-"y. + f>[qn+1 - e"A\i„],

in which the vector qn+ £ is given by

(5) q„+{ = (Ah)~1FFBFg(£) - (Ah)~2FFBF ^ + ■ • • + '-\)\Ahyk" FF BF •

For small Ah, including Ah = 0, an alternate expression for q„+f is found by expand-

ing exp(A/i£) in (2) before the integration is carried out. One finds

(6) qn+{ = <TA*£ Z <Ah)iFFBFsi<£),      j = 0, 1, • • • ,
i

where the column vector s,(£) is

(7) s,(£) = ^- f r'g(r) dr.
J- Jo

The prediction formula (4) can be written in the form

(8) yP+1 = e-Ahyn + h[Vain + Fif„-i + ••• + ^f„_J,

where the diagonal matrices F, depend only upon Ah.

From the predicted value yp+1 so obtained, one computes the predicted value of

f„+1. The correction polynomial of degree k for f is obtained in a similar manner:

(9) f(x, y) ~ FcBcg(.0,      I =» <* — xn)/h.

Here, F° is an N by {k + 1) matrix whose y'th column is given by f„_t+i+i, F° =

(fn-k+1, in-k+2, ■ ■ , fn+i), B° is a (fc + 1) by (k + 1) matrix. Proceeding in complete

analogy, one finds

(10) y„c+1 = e~Ahyn + h[WaU+l + WJn + ■ ■ ■ + WJn-k+1],

where W,- are also diagonal matrices which depend only upon Ah. Specific expres-

sions for Vi, Wi, BF and Bc for the case k = 4 are given in the Appendix.

To start or restart the integration procedure, Picard's iteration method is em-

ployed. Assume that the initial value y, at the station x, is given, then the values y,+)-,

for j = 1,2, • • • , k, are computed simultaneously by iteration. Assume that the mih

approximation for these values of y has been found, one then computes the corre-

sponding values of f and obtains an interpolation polynomial for the mth approxi-

mation. The recurrence relation for generating these values of y are obtained from

(2) and (3) with n in the definition of £ and FF replaced by f + k. One finds

O.s (m+1) —AA   (m + 1)    I     ir„(>») — A*„<">>     1 ; _ 1 U
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where the superscript denotes the order of approximation and the function q is-

defined by (5). The first approximation for y,+j is obtained from (11) by neglecting

the last term of the equation.

3. Truncation Error. In problems of the kind considered, initial perturbations

die out with increasing x. The same is true for the propagation of errors unless the

numerical procedure is not stable. Accordingly, most of the truncation error is

generated locally, and the local truncation error should be a useful measure for the

entire truncation error.- In the present method, the local truncation error is caused

by the fact that f is approximated by a polynomial of degree k. According to [5], the

error caused by this approximation in the corrector phase is given by

(12)      6(0 = (k+%] 6 ~ ~        •••($- £o)(£ - k),      Z = X-z^2 r

where ft+I(£) is the (k + l)th derivative evaluated at some station £ in the interval

^ I =s &. The value £ depends on the value of £ for which e(£) is evaluated. The

local truncation error for the corrector is obtained from (2) and (12). One finds

y(*„+1) - y„°+1 = t = he-™ [ eAnit(0 <«.
Jo

To compute t, an estimate for fk+1Q) is required. In general, f**1 is not available;

therefore, the additional assumption is made that f is exactly given by a polynomial

of degree (k + 1). Then the derivative f*+1 is a constant vector; it can be expressed

in terms of the values f„_fc, f„_,s+i, • ■ • , f„ and fn+u and (13) can be evaluated.

If fk+1 is constant, the difference between the predicted and the corrected values

is simply related to the local truncation error. This relation is used for step control.

One has

(14) l&i - yP+i = Gt,

where G is a diagonal matrix which depends on the degree of the polynomial k and

Ah. This matrix G can be determined from any convenient example, since it does not

depend on f. To derive (14), we first observe that f as a polynomial of degree (k + 1)

depends linearly upon (k + 2) parameters. We choose for these parameters the

values f„_t+1, • • ■ , in, f„+i and the derivative f*+1. In the corrector formula, f is

computed from f„-i+i, • • • , f„, f„+i, the correction polynomial can therefore be

obtained from the exact polynomial by setting fk+1 = 0. One finds by an integration

that

(15) t = hGj"*1,

where Gx is a diagonal matrix which depends on k and Ah. This result is, of course,

already implied by (13). In the predictor phase, the approximation polynomial is

determined by f„_i, f„_t+1, • ■ • , f„. But in the "exact" polynomial the constant

vector fk+1 is a linear function of f„_*, f„_i.+i, • • • , f„ and fn+1. Thus, the prediction

polynomial can be considered as a linear function of the parameters f„_fc+i, • • • ,

f„, f„+1 and f*+l. Now, for f'+1 = 0, the prediction polynomial is the same as the

correction polynomial, therefore
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a16) y»+i — yn+i = hG2t .

Again, G2 is a diagonal matrix depending on k and Ah. Equations (15) and (16) then

lead to (14).

To find the matrix G, we choose for convenience f„_t+I- = 0 for j = 0, 1, • • • ,

k and fn+1 = unit vector. One then obtains

r1
/  eKH!& + 1) •■■ ({ + * - D4

(17) G = (k + 1) —-

/  «A**(f - WZ + 1) ■■•({ + Ä - l)dE
Jo

Por large values of A/i one has

(18) G ~ -(/t + l)Ah.

The values of G for k = 1, 2, 3 and 4 are given in Fig. 1. In practice, a simple bound

for G will be sufficient. For k = 4, the matrix

(19) G = -0.95(10 + 5AA)(2 + AA)/(1 + AA)

serves this purpose, it satisfies

(20) 0.9 |G| = \G\ ^ |G|.

4. Stability. We shall use the usual stability definition, namely, that the solution

should remain bounded as x tends to infinity. If the matrix A on the right-hand side

•of (1) is zero, the present integration method is perfect, except for errors in the

O 50 100

Figure 1. Ratio Between the Difference of Corrected and Predicted y and the Truncation Error
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evaluation of integrals. Therefore, one would expect the method to be stable for

rather large values of h if A is sufficiently small in comparison to A. For integration

methods in which the matrix governing the system is treated as a whole, the stability

analysis is greatly simplified by applying a similarity transformation which brings

the matrix into its diagonal form; the results found from integrating the original

system and the transformed system are exactly the same, except for round-off errors.

Therefore, only a single equation needs to be considered in the stability discussion.

However, if several matrices are considered simultaneously, as in the present method

and also in Gear's approach [2], this simplification does not materialize. Nevertheless,

we discuss the stability of a single equation in this section, for the results so obtained

can be considered as an indication of the usefulness of the method. (This is the same

as assuming that A is a diagonal matrix, too.) In the next section, we shall derive

sufficient stability conditions for a system by a simplified analysis; even these dis-

cussions are still too complicated for practical use. In practice, one will depend upon

the step control, via the control of truncation error, as a means of controlling the

stability.
Assume that A in (1) is a diagonal matrix, then we examine the stability of a

single equation of the form

(21) y' + Xy = yy.

In the integration formulae, (8) and (10), /„-*+,- is now replaced by yyn-k+i. Substi-

tuting the predicted value of y into the corrector formula, one obtains

(22) = a0yn + ctiy«-i + ••■ + otkyn-k,

where the coefficients a,- depend only upon yh and Xh; for k = 4, one has specifically

a0 = e'^h + yh(w0e~M + Wi + yhw0v0),

(23) a, = yh{w2 + yhw0v{),      a2 = yh(w3 + yhw0v2),

«3 = yh(*>i + yhw0D3),      au = (yhfwoVi.

Here, w,- and p, are elements of the matrices given in the Appendix. Now, consider

the following characteristic polynomial:

(24) pl+1 — a0pk — aip*"1 a^p — ak = 0.

The method is stable if the maximum of the absolute values of the roots of (24),

|p[max, is less than one.

The function |p|max is continuous in Xh and yh, but its first derivative need not be

continuous since |p|ma* is not always attained by the same root. This can be seen from

Fig. 2 which shows the relative magnitude of different roots in dependence upon

Xh and yh.
Fig. 3 presents for k = 4 the relation between |p|maj[ and the ratio y/X for various

values of Xh. For Xh < 1.0 and positive yh, |p|ma* is almost exactly approximated by

the principal root, exp[—(X — y)h]. But for negative yh, |p|max is sometimes attained

by spurious roots which are not related to the ideal solution, even if Xh is small.

Fig. 4 gives the same curves as Fig. 3, but for larger values of Xh. Here, no resemblance

with the curve \p\ = exp[—(X — y)h] exists. For 7 = 0, the method is, of course,
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-0.5 0 0.5 1.0

r/X

Figure 4. |p|ma% versus y/\jork = 4 and XA Larger than One

6.0|-1-1-1

-6.0L-'-1—

Figure 5. Region of Stability for k = 4
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exact and |p|max is given by the principal root, exp(—X/z). But, even in a close vicinity

of 7 = 0, very marked deviations from the correct principal root are encountered.

For the exact solution, the right-hand side of (21) is y exp[—(X — y)h]; in the inte-

gration scheme, this expression is replaced by a polynomial of degree k. The deviation

between the correct principal root and the actual value of |p|max must be attributed

to this approximation. For k = 4, the present method is stable for |7| ^ 0.28X, even

if X approaches infinity.

Fig. 5 shows the region of stability in X-7 plane for k = 4. Assume that one treats

a number of equations simultaneously and that 7 has about the same magnitude in

all equations. Then, according to Fig. 5, the step size which is admissible from the

point of view of stability is determined by those equations with small values of X;

under these circumstances, the stiffness of the system, which expresses itself by the

presence of large values of X, is no longer critical.

Figs. 6-9 show the effects of the degree k of the polynomial on the stability. The

admissible step size is smaller for higher values of k. For X = 0, the method reduces

to the usual predictor-corrector method and the results shown in Fig. 6 are the

stability criteria.

1-1-1 \j

-2.0 -1.0 0

yh

Figure 6. Effect of k on |p|max for \h = 0

5. Stability Criteria for a System. For a more general stability discussion of

the system (1) we consider A as a constant matrix. The inhomogeneous term r(x) has

no influence in the stability analysis, therefore f ,• in (8) and (10) is replaced by /ly,-. In

the following analysis, the degree of the predictor and corrector polynomials is
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assumed to be k = 4. Substituting the predictor formula (8) into the corrector formula

(10), one finds

(25) = ß0y„ + öiy„-i + Q2y»-2 + ß3y„-3 + Ö4y„-4,

where the matrices Ö, are given by

Go - e'Kh + hWaA{e-Ah + hV0A) + hW^A,

(26) Ö! = hW2A + h2W0A V^A,      Q2 = hW3 A + h2 W0A V2 A,

Q3 = hWKA + h2W0AV3A,      Qt = h2W0AVtA.

Now one sets

(27) y, = p'z,      yf+i = yn+1,

where z is a vector which does not depend on j, and p is a complex number. Sub-

stitution of (27) into (25) then yields a linear, homogeneous system

(28) Qz = 0,

with the N by TV matrix g given by

(29) Q = pi - pQa - p'Qx - pQ2 - pQ3 - Q*.

The system (28) has a nontrivial solution for z if and only if the determinant \Q\

vanishes. This requirement leads to a characteristic polynomial of degree 57V in p.

The integration method is stable if all zeros of this polynomial lie within the unit

circle.

For an assumed value of the step size h, the elements of the matrices Q0, • • • , Qt

can be computed without too much effort. However, if N is not small, the evaluation

of the determinant requires many multiplications of polynomials. A test which avoids

the explicit evaluation of the characteristic polynomial would, therefore, be preferable.

We make certain simplifications which allow us to derive a sufficient condition for the

stability of the system which is somewhat easier to apply. Because of the simplifi-

cation made, the test may sometimes fail, although the system is stable. Assume that

the diagonal part of the matrix Q is nonsingular and let

(30) . Q = Qd + önd,

where QA and Qnd, respectively, are the diagonal part and the nondiagonal part of Q.

Then the system (28) can be written as

(31) (/ + ÖdIßnd)z = 0.

Stability is guaranteed if we can show that for |p| ^ 1 only the trivial solution for z

exists. Because of the triangular inequality, this is the case if, for \p\— I, the following

condition is satisfied

(32) ||Öd_1ßnd|| < 1.

Of course, the matrix norm used here must be consistent with the definition used for

the vector norm.

For the vector norm, we propose to use a weighted infinity norm where the weights

will be determined such that (32) is as permissive as possible. For such a norm defi-
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0 0.5

It/M

Figure 9. Effect oj k jor \h equal to Infinity

nition, only the absolute values of the element of ßd'2nd are important. These elements

are rational functions of p, which vanish at infinity; according to (29) the degree of the

polynomials occurring in Qd exceeds that of the polynomials for Qnd by at least 1.

We now make the assumption that zeros of all elements of Qd lie within the unit

circle. To check this, one can use the methods of [6], [7]. Then the elements of QllQod

are regular functions in the region |p| 5s 1 (including the point at infinity) and assume

their maximum along the boundary \p\ = 1. Let H be a matrix whose elements are

given by

(33) Hlh = maxIjCej'Ond)/*!. P = e%

We note that the diagonal elements of the matrix ßä'ßnd are zero.

We introduce an auxiliary vector u with positive components and define the

vector norm by

(34) ||z|| = maxK«,)-1 \z,\].

(35) 5 u, 11*11-

In order for the definition of a matrix norm to be consistent with the given vector

norm (34), one must choose

It follows that

(36) |Ä|| = max[(h,)"' £ F*rtl wij-
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One has, according to the definition (34),

||Az|| = max^«,)-1  Z F-,ä|] = rnax^«,)"1 Z \Rik\ |zt|].

Using (35), one arrives at the following relation, which implies the definition of the

matrix norm (36):

\\Rz\\^m^[(UiTlZ\Ra\ut\\z\\\.

The definition of the matrix norm (36) is now applied in (32), and (33) is sub-

stituted. This gives the following stability condition:

(b,)"1 Z Hikuk < 1.
i

This condition can be written in matrix notation

(37) (/ - ff)u > 0,

where the inequality sign is to be applied componentwise. The method is stable for

step h if (37) is satisfied for vector u with positive components. This requirement is

not completely identical with the definition of matrices of the positive kind introduced

in Section 23.1 of [8]. According to definition, the matrix (7 — H) is of the positive

kind if the vector u has positive components whenever (37) is satisfied. We have the

weaker requirement that there should exist at least one vector u for which (37) is

satisfied. The following theorem shows that (7 — 77) is actually a matrix of the positive

kind.

Theorem. Let H = (7/\,) be a matrix for which Hu = 0 if i = j and 77,, > 0

if i 9^ j. Then a vector u = («,), w, > 0,/or which (7 — 77)u > 0 will exist if and only

if the matrix (7 — 77)_1 exists and has all positive elements.

Remark. The assumptions made for 77 are rather strong. It is likely that the proof

can be carried out for irreducible matrices in nearly the same form. From a practical

point of view one also should consider reducible matrices. For the purpose at hand,

one can evade this problem by a continuity argument, i.e. we replace the zeros in the

off-diagonal elements of H by small positive quantities and then apply the present

theorem.

Proof. First we discuss the case that (7 — 77)~1 does not exist. We note that the

matrix 77 satisfies the conditions of the Perron-Frobenius theorem for an irreducible

matrix [9]. Accordingly, the maximum eigenvalue of H and its transpose Hl is positive

and the respective eigenvectors n and £ are positive vectors.

Lemma 1. The real {and the imaginary) parts of the components of all other eigen-

vectors cannot have the same sign.

The eigenvectors of H which do not belong to the maximum eigenvalue must be

orthogonal to C and the components of < are all positive.

Lemma 2. The vectors of the null space of (I — H) can be considered as real.

Lemma 3. A vector of the null space of {I — H) cannot have some zero components

if all other components are positive.

Assume that the fcth component of a vector n is zero but that all others are positive,

then the fcth component of (I — H)n is negative, which contradicts the assumption

that n is a vector in the null space.

Lemma 4. If the null space of(I— H) contains one vector tii whose components are
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all positive, then the null space is one dimensional.

Assume that within the null space there is a second vector n2 with some positive

and some negative components, then n3 = nx -f- an2 is also a vector of the null space.

One can choose a such that all components are nonnegative and at least one is zero.

This contradicts Lemma 3. The same holds if and n2 are linearly independent

positive vectors.

Lemma 5. If (7 — 77) has zero for an eigenvalue, then there is no vector nx > 0

for which (I - H)nl > 0.
Case t. The null space of (/ — H) is one dimensional and contains one positive

vector »1. Then nx is identical with the eigenvector of TT which belongs to the maximum

eigenvalue, for according to Lemma 1 all other eigenvectors of H have components

with mixed signs. It follows that the vector adjoint to nu to be denoted by is also

positive. In order for the equation (7 — 77)n = z > 0 to be solvable for n, one must

have (z, £,) = 0. But this condition cannot be satisfied for & > 0.

Case 2. The null space of (7 — 77) contains one vector i»! with positive and negative

components. Assume that there exists a vector n2 > 0 for which (7 — 77)n2 > 0. One

can then form a vector

n3 = atii + (1 — a)n2,      0 < a < 1,

for which at least one component is zero and all others are positive. Then one has on

the one hand

(7 - H)n3 = (1 - a)(7 - #)n2 > 0,

since (7 — 7/)nj = 0. On the other hand, assume that the kth component of n3 is

zero. Then one finds by direct evaluation that the kth component of (7 — H)n3 is

negative. Because of this contradiction, the assumption that a vector n2 > 0 exists is

wrong.

This concludes the discussion of cases where (7 — 77)"1 does not exist.

If (7 — H)'1 exists, then the sufficiency of the theorem is trivial. Since (7 — H)'1

has all positive elements, an admissible vector u > 0 can be constructed as (7 — 7T)-1d,

where d > 0.

The necessity is next shown by contradiction. First, assume that there exists a

vector Uj. > 0 for which

(38) (7 - TOuj > 0.

Next, assume that (7 — 77)~1 has some nonpositive components:

(39) [(7 - HT']mn = 0,   for some suitable {m, n).

Denote the nth column vector of (7 — 77)_1 by u„, then the components of uM are

(40) («„),• = [(/ - H)~lhn.

For some values of /, say j = k', k", m,

(41) (h„), g 0.

We can now construct a vector

(42) Um = (1 — aOur. + au„.
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For a = 0, Um > 0; for a = 1, the components (Mm),-, for / = k', k", m, are non-

positive. Therefore, one can find a value of a, 0 < a = 1, such that all components of

um are nonnegative and at least one is zero. Assume that

(43) (Mm)*. = 0   and   (uin), ^ 0   for j 7^ k'.

Based on (43), we can now compute (7 — 77>iiii by two different methods. If we write

(44) (7 - ff)u„i = (1 - a)(I - 77)U! + «(/ - H)au,      0 < a g 1,

then all the components of (7 — 77)uin are nonnegative because of (38) and since the

components (7 — Tfhin are given by S,„. In particular, one has

(45) [(/ - JOumlk- ^ 0.

On the other hand, we can also write

(46) [(/ - /7)um]*' = («m)*' - Z #*',(«m), < 0,

which is negative because of (43) and the definition of 77. The contradiction between

(45) and (46) shows that the assumption (39) is false. This completes the proof of the

theorem.

Instead of determining the inverse of (7 — H), one can solve the system

(47) (/ - #)!!, = X!

with respect to u, for some xx > 0. A vector u > 0 for which (7 — H)a > 0 will exist

only if Uj > 0. The particular choice of X! is unessential. This can be shown by re-

placing the vector u„ in the above argument by u.

If a vector u > 0 satisfying (37) exists, then ||77|| < 1 and (32) will hold outside of

the unit circle. The explicit form of u need not be known. Sometimes, in particular if

77 is small, it will be easiest to find u by inspection.

It is crucial that the matrix 77 give a rather narrow bound for Q^Qnd- Such a

bound would be obtained if one searches along the unit circle for the maxima of the

individual elements of öä'ßnd. If H is smaller, then rougher estimations will be

sufficient. One can, for instance, find upper bounds for the elements of QBi and lower

bounds for Qd along the unit circle from the coefficient of the polynomials. If the

determination of the lower bound of Qd is critical, it might be preferable to search for

it along the unit circle. The following examples show the effects of different approx-

imations fOr ßd'ßnd-

We consider a system of two equations in which the diagonal matrix A is given by

A =
1 0

_0 100_

For the matrix A, we have assumed three different forms

Al =
1

30j

A, =
1

20.

A3 =
1

10.

An exact stability analysis gives the corresponding admissible step sizes as

hi = 0.55,      A2 = 3.30,      h3 = 3.66.
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If H is obtained by searching the maximum elements of Qd 1Q^d along the unit circle,

then (47) gives the admissible step size for stability as

^ = 0.40, 2.55, h3 = 3.15.

These results show that the present approach gives good approximations to the actual

stability limits. If H is found by bounding the elements of Qd and Qnd separately, the

results obtained are less satisfactory. The values of h for which stability can then be

guaranteed are

* < 0.1.      A2 = 0.2,      A, - 1.31.

The results summarized in Fig. 5 would suggest that a method is stable for a

certain h if stability has been established for a larger h but this conjecture has not

been proven.

Appendix.   The constant matrices B' and B, for k = 4, are

B =

0 -1/4

0 4/3

3

4

11/24

-7/3

19/4

-13/3

B"

25/12 35/24

0   -1/12 -1/24

0      1/2 1/6

0 -3/2 1/4

1 5/6 -5/6

.0      1/4 11/24

-1/4

7/6

-2

3/2

-5/12

1/12

-1/2

1

-5/6

1/4

1/24

-1/6

1/4

-1/6

1/24

1/24

-1/6

1/4

-1/6

1/24

Let M m Ah and E = e M, then the diagonal matrices F, and JF, for fc = 4 are

given by

M~

+ M

V, = AT

+ «-(f-f£)
5[lOM4 - M3(^ - 3Z?)

JA9     19 \

- M(13 - 9E) + 4(1 - E)
]•

M(18 - 12F) + 6(1
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+ M2^ - lj      - M(ll - ie) + 4(1 - £)] ,

k4 = At(m4 - m3(ff - I E)

+ M!(||_il£)_M(|_|,) + (1_£)]:

Wo = k«,

If, = -A*~5^A/4£ - M3{a + \e]

+ M2(^ - I e) - Af(9 - 5E) + 4(1 - £)] ,

w2 = AT^-M3^ + I i?) + - \      - M(12 - 6E) + 6(1 - £)] ,

wa - -AT5[-A/3(| + if) + M2(^| + I e) - M(7 - 3£) + 4(1 - £)] .

wt . m-(-^(i + £ *) + m2(^ + i *) _ m(| - i E) + (1 - *)].

We note that K, and wt are finite for Af = 0.
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