Tridiagonalization of completely nonnegative matrices
HTML articles powered by AMS MathViewer
- by J. W. Rainey and G. J. Habetler PDF
- Math. Comp. 26 (1972), 121-128 Request permission
Abstract:
Let $M = [{m_{ij}}]_{i,j = 1}^n$ be completely nonnegative (CNN), i.e., every minor of $M$ is nonnegative. Two methods for reducing the eigenvalue problem for $M$ to that of a CNN, tridiagonal matrix, $T = [{t_{ij}}]$ (${t_{ij}} = 0$ when $|i - j| > 1)$), are presented in this paper. In the particular case that $M$ is nonsingular it is shown for one of the methods that there exists a CNN nonsingular $S$ such that $SM = TS$.References
- F. L. Bauer, Sequential reduction to tridiagonal form, J. Soc. Indust. Appl. Math. 7 (1959), 107–113. MR 100345
- F. R. Gantmacher, Matrizenrechnung. II. Spezielle Fragen und Anwendungen, Hochschulbücher für Mathematik, Band 37, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959 (German). MR 0107647 F. R. Gantmacher & M. G. KREĬN, Oscillating Matrices and Kernels and Small Oscillations of Mechanical Systems, 2nd ed., GITTL, Moscow, 1950; German transl., AkademieVerlag, Berlin, 1960. MR 14, 178; MR 22 #5161.
- J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Math. Comp. 26 (1972), 121-128
- MSC: Primary 65F15
- DOI: https://doi.org/10.1090/S0025-5718-1972-0309290-8
- MathSciNet review: 0309290