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An Improved Method for Numerical

Conformal Mapping

By John K. Hayes, David K. Kahaner and Richard G. Kellner*

Abstract. A new technique for the numerical conformal mapping of a planar region onto

the unit disk has been presented and tested by Symm. By elaborating on his methods, we

have improved the accuracy of the numerical results by up to four orders of magnitude.

For illustration, our methods have been applied to several of the same regions considered

in the literature by Symm and Rabinowitz. A flexible FORTRAN code and User's Guide are

reproduced on the microfiche card in this issue.

1. Introduction. A new technique for the numerical conformal mapping of a

planar region onto the unit disk has been presented and tested by Symm [7], [8], [9].

By elaborating on his methods, we have improved the accuracy of the numerical

results by up to four orders of magnitude. For illustration, our methods have been

applied to several of the same regions considered in the literature by Symm [7] and

Rabinowitz [6].

In this paper, we numerically approximate the Univalent function /(z) which maps

the bounded, simply-connected region D of the complex plane onto the unit disk.

Let L be the boundary of D and choose z„ G D to be the point which is to be mapped

into the center of the unit disk. It is known [7] that

w = /(z) = exp[log(z - z0) + g(z) + ih(z)],

where g and h are real-valued harmonic conjugates, and g satisfies

VV(z) =0   forz G D,

and

g(z) = —log |z — z0|   forz G L.

The mapping function /(z) above is determined only to within an arbitrary rotation.

This depends upon the branch of the logarithm used in the computation and the

additive constant chosen for the function h.

Symm [7] numerically solves the integral equation of the first kind

0) Jl <Kf) log |z - f| \dt\ = -log |z - zo|, zGL.

This may always be done, subject to a possible rescaling of the region D [3], [5].

Then, for any z G D + L, g and h have the representation
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(2) g(z) - f <r(f) log \z - S\ \d{\,

(3) h(z) = f <r(f)arg(z - f)

The function arg must be chosen in an appropriate manner [4].

2. Description of the Method. Our procedure for numerically mapping a region

can be divided into two operational steps:

(i) Solve Eq. (1) for the function a.

(ii) Evaluate Eqs. (2) and (3) for each point z £ D where we want to find f(z).

Let the curve L have the parametric representation {(d(/), w(0) | t £ (0, d]} with

respect to arc length t. Here, d is the length of L. Define f(f) = v(t) 4- iw(t). With

this notation, Eqs. (2) and (3) become

(4) g(z) = f <r(0 log |z - f(f)| A, zGD+L,

(5) A(z) =  f <r(r) arg(z - f(0) A,      z £ D + L,
Jo

where we have used c(t) for a(f(0)-

Now, we will sketch how we compute the function a(f) numerically. A detailed

development is contained in [1]. Since a(t) is a function of arc length, we extend it

continuously as a periodic function on (— <», + oo). For ease of explanation, assume

<r(t) £ C3(— oo, 4- co) and that L has no corners. Place on L a uniform mesh of n

points (n even), each h = d/n units apart. (In actual practice, one might wish to

divide L into several sections. The mesh points on each section would then be uniform

with respect to arc length on that section. See the user's guide in the microfiche

portion of this issue and also Example 2 of this paper.) Define a set of piecewise

polynomial functions pi(t), p^ii), ■ ■ ■ , p„(t) by

Pl(t) = («• - h)(t - 2h)/2h2,      0 ^ l ^ 2k,

= (t + h)(t 4- 2h)/2h\      -Ih % t £ 0,

= 0, otherwise,

Pi(t) = -tit - 2h)/h\ '    S IM M,

= 0, otherwise,

P»m(Ö = P>(' - 2/4),      / = 1, 2, ■ • ■ , n/2 - 1,

and

Piiit) = p2(< - 20 - m% i = 2, 3, • • • , n/2.

Define also <?(/) = 2-"-i ^O'/OaCO- It1S true that
(i) «?(<) is a polynomial of degree two on [ih, (i + 2)h], for i = 0, 2, 4, • • • , n — 2.

(ii) cr(0 - <r(r) at r = ih, for / = 0, 1, 2, • • • , n.

(6) (iii) ait) = dit) + 0(ii3) = £ <7,p,(f) 4- 0(/!3),
i-i

where     = o-(/7/) for / = 1, 2, • • • , n.
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Using the approximation Eq. (6) in Eq. (4), we get

(7) Z at f Pk(t) log |z - KOI dt = g(z) + 0(h3).

The function g(z) = —In |z — z0| for z£ L. Thus, we can evaluate Eq. (7) at the

points z = f(/A) for / = 1, 2, • • ■ , n, and we will get n linear equations with constant

coefficients for the variables <ru a2, ■ • ■ , crn. Set A = (aik) and B — (20, where

«« = f P»(0 log |f(/A) - KOI A,   for /,k - 1, 2. ••• . «i
Jo

6, = -log \i(ih) - z0|, for / = 1, 2, • • • , ft.

With this notation, Eq. (7) leads to the linear system Aö = B + 0(h3), where 0(h3)

is a vector, with each component bounded by 0(h3), and ö = (er,, er2, • • • , er,,)1".

The matrix equation we actually solve is

(8) Ax = B,

where the elements of Ä are approximations to those of A. Using our representation

for the pk(t), it is evident that to compute A it is sufficient to evaluate integrals of

the form

(9) [      /' log \z - f(0| dt

for i — 1, 2, • • • , n and y = 0, 1, 2. The S'it are the result of approximating the in-

tegrals (9). For each fixed x, y and i, we approximate |z — t(t)\ by a polynomial

£7(0 of degree two on ((/' — \)h, ih). We choose q(t) so that

q(t) = \z - f(0|2   for t = (i - 1)«, (i - \)h, ih.

Then

(     f' log |z - «Ol A «I f     r' iog[«(0] A'!

The integrals on the right-hand side above can be evaluated explicitly. For certain

special cases, for instance when \z — f(0l = 0 on [(/ — 1)A, z7i], the treatment is

slightly different in that a higher order polynomial is used.

We then solve the matrix equation Äx = B for the vector x = (tu t2, ■ ■ ■ , t„)t

and use this as an approximation to d. Then

lid - *H = U(A~l ~ + IM"'!I o(h3).

We have found by experience on numerous problems that the error due to

A~l — A'1 seldom if ever dominates the ||/4-1||c7(«3) term. Another analysis [2]

strongly indicates that |\A~'|| ^ 0(l//i).

Once <r(0 has been computed, we may calculate g(z) and h(z).

g(z) = f «r(0 log |z - Kr)| dt
Jo

*-i Jo
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These integrals are approximated as described above. The calculation of h(z) is

more difficult. Using integration by parts, and approximations similar to those

above, we are led to integrals of the form

iL„/arg(z~mut'

where /' = 1, 2, ■ • • , n and j = 0, 1, 2, 3. The evaluation of these integrals is discussed

in detail in [1].

The method set forth by Symm in [7] uses piecewise constant functions in Eq.

(6) and evaluates the integrals in Eq. (7) by using Simpson's rule of integration.

3. Tests. A FORTRAN IV version of the algorithm described has been coded

to run on our CDC 6600 and CDC 7600. This program is more or less machine

independent, has flexible input, and is general enough to handle a large class of

problems. It is a modification of a program described in [1] which has been in use

for a few years. A limited number of copies of this deck and a user's guide are avail-

able from the authors. Using this code, we have computed some approximate con-

formal maps for several regions, including some used in [7]. Since our technique is

an extension of the method used there, it is appropriate to compare our results with

those. All of the regions selected for test have substantial symmetry. We have elected

to ignore this symmetry in our code in order to give utmost flexibility. Taking

advantage of symmetry ought to enhance the accuracy by reducing the volume of

computation.

Symm has pointed out [8] that the maximum errors occur on the boundary of

the region being mapped. Since points on the boundary have image points on the

unit circle, it is easy to check the error in the modulus of an arbitrary boundary

point. The data points themselves are constrained by the defining equations to be

mapped onto |w| = 1, hence we check for modulus error at points midway between

each of the data points. The columns labeled ERR-MOD contain the maxima of the

quantities ||tv| — 1 j at these intermediate points. Computing the error in the argument

is more difficult. Symm provides an estimate of this in [8], denoted EA. Our experience

has indicated that as the region becomes less circular and more elongated, errors,

particularly those in the argument, increase in a monotonic way. Since the numbers

EA provided by Symm did not have this property, we considered them somewhat

unreliable and decided to use an alternative technique. The columns labeled ERR-

ARG represent the maximum difference in the argument at the data points between

two computations, the second corresponding to the largest number of data points

used for the domain in question. It is reasonable to examine the argument at the

data points rather than the intermediate points, since the argument is not constrained

in any way by Eq. (1). This procedure does yield the monotonicity we expect. In

certain cases, analytic expressions for the conformal maps are available. It is then

possible to compute the absolute errors in the argument exactly. These numbers

compare extremely well with the approximate errors ERR-ARG described above,

and constitute our main justification for this approach.

Each of our test regions has its center point mapped into the origin. In what

follows, h and n will have the same meaning as in Section 2.

Example 1. Oval of Cassini. This curve is defined by
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[(* + I)2 + y*][(x — l)2 + y2] = a, a>\.

For a near 1, the curve is elongated and nonconvex, becoming more circular as

a increases. For a — 1.06, the width to height ratio is about 5. Points are distributed

uniformly on the entire boundary. The exact mapping is given by

m = ca/(ct - l + z2y,

and we use this to compute errors in the argument.

Table I

Oval of Cassini

a n h ERR-MOD ERR-ARG

1.06 65 .11
1.06 129 .06
1.8 33 .34
1.8 65 .18
1.8 129 .09

2 X 10~3 2 X 10"3

1 X 10"4 2 X 10"4

1 X 10"4 1 X 10"4
1 X 10"5 1 X 10"s

6 X 10"7 7 X 10"7

The maximum error occurs at or near x = 0. The errors near y = 0 are smaller

by a factor of 1/100. The comparison with Symm must be made carefully, since his

data points are for the most part distributed uniformly with respect to x rather than /.

As far as we can determine, errors in the modulus are from one to four orders of

magnitude better than those in [7]. We should emphasize that our distribution of

points is poor.

For a = 1.06, n = 65, Table II indicates errors for points inside the curve.

Table II

Oval of Cassini

a = 1.06 n = 65 ERRORS IN
x y MODULUS ARGUMENT

1.4 0. 6 X 10~7 3 X 10"5

1.26 0. 6 X 10-7 3 X 10-5

1.12 0. IX 10~6 3 X 10"

0.98 0. 2 X 10"6 3 X 10"
0.84 0. 2 X 10"6 3 X 10"

0.7 0. 4 X 10"6 3 X 10"

0.56 0. 7 X 10"6 3 X 10"
0.42 0. 2 X 10"5 4 X 10"

0.28 0. 5 X 10"5 4 X 10"
0.14 0. 1 X 10"4 4 X 10"

5
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Example 2. Rectangle. — 1 'S x g +1, —a g y ^ a.

The case a = 1 was computed exactly by the use of elliptic integrals. In the other

cases, we use a comparison with the most accurate computed values. Points are

uniformly spaced on each side, with n/4 points per side. See Table III.

Table III

Rectangle

n ERR-MOD ERR-ARG

0.1

0.2

516
260
132
68

36

516
260
132
68
36

0.4 260
132
68

36

0.5

0.8

1.0

132
68
36

260
132

68
36

260
132
68
36

4 X 10"5

6 X 10-4

5 X lO'3

1 X 10-2

6 X 10"2

3 X 10-6

4 X 10"5

5 X lO"4

5 X 10-3

1 X 10"2

3 X 10~6

4 X 10"5

6 X 10"4

5 X 10~3

1 X 10~6

2 X 10-5

2 X 10-4

2 X 10~3

2 X 10"7

3 X 10~6

4 X 10-5

6 X 10"4

9 X 10-8

1 X lO-6

2 X 10-5

2 X 10~4

7 X 10-4

6 X 10~3

1 X 10"2

5 X 10"2

4 X 10"5

6 X 10-"
7 X 10'3

2 X 10~2

—

4 X 10~5

7 X 10"4

1 X 10"2

2 X 10"5

2 X 10"4

3 X 10"3

5 X 10~6

8 X 10"5

3 X 10"3
f

1 X 10"6

3 X 10~5

1 X 10"3

Both ERR-MOD and ERR-ARG are monotonic with respect to n and a for

a ^ 1. Errors in the modulus are from one to two orders of magnitude better than in

[7]. It should be noted that for small a the distribution of boundary points is poor.

This is true for most of the examples. The only reason for using the given distribution

of points is to compare with [7]. Our experience shows that a good rule of thumb
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for the distribution of boundary points is to keep the distance between successive

boundary points and the distance from the boundary points to the center in a nearly

constant ratio. Thus, for a small, we want more points near the centers of the longer

two sides and fewer points on the shorter two sides. This can be done by dividing

the boundary into sections as mentioned in the paragraph following Eq. (5). We ran

the problem with a = 0.1 again, using a particularly simple redistribution of the

boundary points. For a fixed number of points, the errors decreased by about 1 /50.

Using an optimal distribution of points, one would get more accuracy.

Example 3. Ellipse, x2/a2 + y2 = 1. The data points are uniformly distributed

on the boundary of the ellipse. See Table IV.

Table IV

Ellipse

ERR-MOD ERR-ARG

1.25 257 3 X 10-8 —

129 3 X 10~7 2 X 10-7
65 4 X 10_a 4 X 10"-6

33 5 X lO"5 4 X 10

2.5 257 3 X 10-7 —

129 4 X 10-6 5 X 10-8

65 5 X 10"5 6 X 10"5

33 7 X 10"4 9 X 10"4

5.0 257 4 X 10-6 —

129 4 X 10"5 5 X lO"5

65 7 X 10~4 2 X 10-8

33 6 X 10"3 5 X 10-8

10 257 4 X 10-5 —

129 6 X 10-4 6 X 10~4

65 5 X 10-3 6 X 10-3

33 1 X 10"2 - 6 X 10

20                      257 5 X 10"4 —

129 5 X 10"3 6 X 10~3

65 1 X 10~2 3 X 10-3

33 7 X 10-2 5 X 10-2

-5

Again, we note monotonicity with respect to n and a for a Si 1, with maximum

error near the center of the side intersected by the minor axis. Improvements over

[7] are from one to three orders of magnitude, with the least improvement for a = 20.

Example 4. Isosceles Triangle. The corners of the triangle are at (0, 1), (2, — 1),

(—2, —1), and (0, 0) is mapped into the origin of the unit circle. There are equal

numbers of points on each side.
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Table V

Triangle

ERR-MOD ERR-ARG

65 1 X 10-
33 2 X 10-5 6 X 10-
17 2 X 10- 9 X 10-

4. Timing. There are three operations that are important as far as timing is

concerned: (i) generating the matrix Ä of Eq. (8), (ii) solving the matrix Eq. (8), and

(iii) evaluating the function /(z) at a given point. The time required for (i) is propor-

tional to n2 and is about 0.85 sec** for n = 200. The time required for (ii) is propor-

tional to n3 and is about 2 sec for n = 200. The time required for (iii) is proportional

to n and is 0.016 sec for n = 200.
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