
In Volume I on p. 95, Eq. (11), the power of y in the value of the integral should be $2m + 1$ instead of $2m$.

In Volume II on p. 289, Eq. (13), in the value of the integral for $L_\nu^{-m}(−y^2)$ read $L_\nu^{-m}(−y^2)$.

J. C. NASH

Mathematical Institute
University of Oxford
Oxford, England

On p. 837, formula 7.374.7 is incorrect. In the right-hand side, replace $L_\nu^{-m}(−2y^2)$ by $L_\nu^{-m}(−2y^2)$.

On p. 841, formula 7.388.6 is incorrect. In the right-hand side replace b^{2m} by b^{2m+1}.

J. C. NASH

493.—F. M. HENDERSON, Elliptic Functions with Complex Arguments, Univ. of Michigan Press, Ann Arbor, 1960.

On p. 4 of the introduction, the extension of $F(k, x)$ to real $x > 1/k$ is erroneous because of an omitted minus sign before the last integral preceding Eq. (8). This equation should consequently be replaced by

$$F\left(\frac{x_0}{1/k}\right) = F\left(\frac{1/(kx_0)}{1/k}\right).$$

An equivalent and more informative statement is

$$F(k, x_0) = F(k, 1/(kx_0)) - iK', \quad \text{for } x = x_0 > 1/k.$$

In Part II the values indicated as those of y in the tables of $x + iy = cn(u + iv)$ are, in fact, the values of $-y$. The same correction applies to the tables of $x + iy = dn(u + iv)$ in Part III.

J. R. PHILIP

CSIRO Division of Environmental Mechanics
Canberra, A. C. T., Australia

EDITORIAL NOTE: For a review of this book see Math Comp., v. 15, 1961, pp. 95–96, RMT 18.