On the distribution of pseudo-random numbers generated by the linear congruential method
HTML articles powered by AMS MathViewer
- by Harald Niederreiter PDF
- Math. Comp. 26 (1972), 793-795 Request permission
Abstract:
The discrepancy of sequences of pseudo-random numbers generated by the linear congruential method is estimated, thereby improving a result of Jagerman. Applications to numerical integration are mentioned.References
- U. Dieter, Statistical interdependence of pseudo-random numbers generated by the linear congruential method, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 287–317. MR 0353622
- D. L. Jagerman, Some theorems concerning pseudo-random numbers, Math. Comp. 19 (1965), 418–426. MR 184405, DOI 10.1090/S0025-5718-1965-0184405-X
- J. F. Koksma, A general theorem from the theory of uniform distribution modulo 1, Mathematica, Zutphen. B. 11 (1942), 7–11 (Dutch). MR 15094
- H. Niederreiter, Methods for estimating discrepancy, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 203–236. MR 0354593
- H. Niederreiter, Almost-arithmetic progressions and uniform distribution, Trans. Amer. Math. Soc. 161 (1971), 283–292. MR 284406, DOI 10.1090/S0002-9947-1971-0284406-6
- H. Niederreiter, Discrepancy and convex programming, Ann. Mat. Pura Appl. (4) 93 (1972), 89–97. MR 389828, DOI 10.1007/BF02412017
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Math. Comp. 26 (1972), 793-795
- MSC: Primary 65C10
- DOI: https://doi.org/10.1090/S0025-5718-1972-0326979-5
- MathSciNet review: 0326979