On the zeros of the incomplete gamma function
Author:
K. S. Kölbig
Journal:
Math. Comp. 26 (1972), 751-755
MSC:
Primary 65D20
DOI:
https://doi.org/10.1090/S0025-5718-1972-0326994-1
MathSciNet review:
0326994
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Some asymptotic formulae given elsewhere for the zeros of the incomplete gamma function are corrected. A plot of a few of the zero trajectories of the function
is given, where
is a real parameter. Based on theoretical work by Mahler, it is seen that the zero trajectories of
lie in a finite region of the complex
-plane.
- [1] Handbook of mathematical functions, with formulas, graphs and mathematical tables, Edited by Milton Abramowitz and Irene A. Stegun. Fifth printing, with corrections. National Bureau of Standards Applied Mathematics Series, Vol. 55, National Bureau of Standards, Washington, D.C., (for sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402), 1966. MR 0208798
- [2] Philip Franklin, Calculation of the complex zeros of the function 𝑃(𝑧) complementary to the incomplete gamma function, Ann. of Math. (2) 21 (1919), no. 1, 61–63. MR 1503528, https://doi.org/10.2307/2007135
- [3] Alwin Walther, Über die reellen Nullstellen der unvollständigen Gammafunktion 𝑃(𝑧), Math. Z. 23 (1925), no. 1, 238–245 (German). MR 1544740, https://doi.org/10.1007/BF01506230
- [4] G. Rasch, Über die Nullstellen der unvollständigen Gammafunktion 𝑃(𝑧,𝜚), Math. Z. 29 (1929), no. 1, 300–318 (German). MR 1545006, https://doi.org/10.1007/BF01180532
- [5] Einar Hille and G. Rasch, Über die Nullstellen der unvollständigen Gammafunktion 𝑃(𝑧,𝜚), Math. Z. 29 (1929), no. 1, 319–334 (German). MR 1545007, https://doi.org/10.1007/BF01180533
- [6] K. Mahler, ``Ueber die Nullstellen der unvollstaendigen Gammafunktion,'' Rend. Circ. Mat. Palermo, v. 46, 1930, pp. 1-42.
- [7] F. G. Tricomi, Asymptotische Eigenschaften der unvollständigen Gammafunktion, Math. Z. 53 (1950), 136–148 (German). MR 45253, https://doi.org/10.1007/BF01162409
- [8] Francesco G. Tricomi, Funzioni ipergeometriche confluenti, Edizioni Cremonese, Roma, 1954 (Italian). MR 0076936
- [9] F. G. Tricomi, Fonctions hypergéométriques confluentes, Mémorial des Sciences Mathématiques, Fasc. CXL, Gauthier-Villars, Paris, 1960 (French). MR 0120409
- [10] K. S. Kölbig, Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function, Math. Comp. 24 (1970), 679–696. MR 273787, https://doi.org/10.1090/S0025-5718-1970-0273787-8
- [11] K. S. Kölbig, Complex zeros of two incomplete Riemann zeta functions, Math. Comp. 26 (1972), 551–565. MR 303686, https://doi.org/10.1090/S0025-5718-1972-0303686-6
- [12] A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Higher Transcendental Functions. Vol. II, McGraw-Hill, New York, 1953. MR 15, 419.
Retrieve articles in Mathematics of Computation with MSC: 65D20
Retrieve articles in all journals with MSC: 65D20
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1972-0326994-1
Keywords:
Incomplete gamma function,
complex zeros
Article copyright:
© Copyright 1972
American Mathematical Society