A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations
HTML articles powered by AMS MathViewer
- by Stephen Hilbert PDF
- Math. Comp. 27 (1973), 81-89 Request permission
Abstract:
For a given uniform grid of ${E^N}$ (N-dimensional Euclidean space) with mesh h, a class of smoothing functions (mollifiers) is constructed. If a function is an element of the Sobolev space $H_2^m$, then the error made by replacing the given function by a smoother $({C^\infty })$ function (which is the given function convolved with one of the mollifiers) is bounded by a constant times ${h^m}$. This result is used to construct approximations for functions using Hermite or spline interpolation, even though the function to be approximated need not satisfy the continuity conditions necessary for the existence of a Hermite or spline interpolate. These techniques are used to find approximations to the generalized solution of a second order elliptic Neumann problem.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 0178246
- J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112–124. MR 263214, DOI 10.1137/0707006
- J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math. 16 (1970/71), 362–369. MR 290524, DOI 10.1007/BF02165007
- J. H. Bramble and A. H. Schatz, Least squares methods for $2m$th order elliptic boundary-value problems, Math. Comp. 25 (1971), 1–32. MR 295591, DOI 10.1090/S0025-5718-1971-0295591-8
- Jacques L. Lions, Problèmes aux limites dans les équations aux dérivées partielles, Séminaire de Mathématiques Supérieures, No. 1 (Été, vol. 1962, Les Presses de l’Université de Montréal, Montreal, Que., 1965 (French). Deuxième édition. MR 0251372
- J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math. 11 (1968), 346–348 (German). MR 233502, DOI 10.1007/BF02166687
- R. S. Varga, Functional analysis and approximation theory in numerical analysis, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 3, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1971. MR 0310504
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Math. Comp. 27 (1973), 81-89
- MSC: Primary 65D10; Secondary 65N99
- DOI: https://doi.org/10.1090/S0025-5718-1973-0331715-3
- MathSciNet review: 0331715