## A comparison of algorithms for rational $l_{\infty }$ approximation

HTML articles powered by AMS MathViewer

- by C. M. Lee and F. D. K. Roberts PDF
- Math. Comp.
**27**(1973), 111-121 Request permission

Corrigendum: Math. Comp.

**33**(1979), 847-848.

Corrigendum: Math. Comp.

**33**(1979), 847.

## Abstract:

Results are reported of a numerical study to compare eight algorithms for obtaining rational ${l_\infty }$ approximations. The algorithms investigated are Loeb’s algorithm, the linear inequality algorithm, the Osborne-Watson algorithm, the differential correction algorithms I, II and III, the Remes algorithm and Maehly’s algorithm. The results of the study indicate that the Remes algorithm and the differential correction algorithm III are the most satisfactory methods to use in practice.## References

- I. Barrodale,
- I. Barrodale and J. C. Mason,
*Two simple algorithms for discrete rational approximation*, Math. Comp.**24**(1970), 877–891. MR**301894**, DOI 10.1090/S0025-5718-1970-0301894-X
I. Barrodale, M. J. D. Powell & F. D. K. Roberts, - E. W. Cheney,
*Introduction to approximation theory*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0222517** - E. W. Cheney and H. L. Loeb,
*Two new algorithms for rational approximation*, Numer. Math.**3**(1961), 72–75. MR**121965**, DOI 10.1007/BF01386002 - E. W. Cheney and H. L. Loeb,
*On rational Chebyshev approximation*, Numer. Math.**4**(1962), 124–127. MR**152108**, DOI 10.1007/BF01386303 - E. W. Cheney and T. H. Southard,
*A survey of methods for rational approximation, with particular reference to a new method based on a forumla of Darboux*, SIAM Rev.**5**(1963), 219–231. MR**158531**, DOI 10.1137/1005065 - Charles B. Dunham,
*Convergence problems in Maehly’s second method*, J. Assoc. Comput. Mach.**12**(1965), 181–186. MR**181083**, DOI 10.1145/321264.321268 - Charles B. Dunham,
*Convergence problems in Maehly’s second method. II*, J. Assoc. Comput. Mach.**13**(1966), 108–113. MR**188680**, DOI 10.1145/321312.321320 - George E. Forsythe and Cleve B. Moler,
*Computer solution of linear algebraic systems*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219223**
W. Fraser & J. F. Hart, "On the computation of rational approximations to continuous functions," - Saul I. Gass,
*Linear programming. Methods and applications*, 3rd ed., McGraw-Hill Book Co., New York-London-Toronto, Ont., 1969. MR**0266606**
H. L. Loeb, - Henry L. Loeb,
*Algorithms for Chebyshev approximations using the ratio of linear forms*, J. Soc. Indust. Appl. Math.**8**(1960), 458–465. MR**119383**, DOI 10.1137/0108031 - Hans J. Maehly,
*Methods for fitting rational approximations. II, III*, J. Assoc. Comput. Mach.**10**(1963), 257–277. MR**157474**, DOI 10.1145/321172.321173 - M. R. Osborne and G. A. Watson,
*An algorithm for minimax approximation in the nonlinear case*, Comput. J.**12**(1969/70), 63–68. MR**245314**, DOI 10.1093/comjnl/12.1.63 - Anthony Ralston,
*A first course in numerical analysis*, McGraw-Hill Book Co., New York-Toronto-London, 1965. MR**0191070** - John R. Rice,
*The approximation of functions. Vol. 2: Nonlinear and multivariate theory*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR**0244675** - Theodore J. Rivlin,
*An introduction to the approximation of functions*, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1969. MR**0249885** - G. A. Watson,
*On an algorithm for nonlinear minimax approximation*, Comm. ACM**13**(1970), 160–162. MR**0286485**, DOI 10.1145/362052.362056 - Helmut Werner,
*Tschebyscheff-Approximation im Bereich der rationalen Funktionen bei Vorliegen einer guten Ausgangsnäherung*, Arch. Rational Mech. Anal.**10**(1962), 205–219 (German). MR**144448**, DOI 10.1007/BF00281188

*Best Rational Approximation and Strict Quasi-Convexity*, M.R.C. Report 1157, University of Wisconsin, Madison, Wis., 1971.

*The Differential Correction Algorithm for Rational*${l_\infty }$

*Approximation*, Math. Report No. 54, University of Victoria, Victoria, British Columbia, 1971.

*Comm. Assoc. Comput. Mach.*, v. 5, 1962, pp. 401-403.

*On Rational Fraction Approximations at Discrete Points*, Convair Astronautics, Math. Preprint No. 9, 1957.

## Additional Information

- © Copyright 1973 American Mathematical Society
- Journal: Math. Comp.
**27**(1973), 111-121 - MSC: Primary 65D15
- DOI: https://doi.org/10.1090/S0025-5718-1973-0331719-0
- MathSciNet review: 0331719