Saddle Points of the Complementary Error Function

By Henry E. Fettis, James C. Caslin and Kenneth R. Cramer

Abstract. The first one hundred zeros of the derivative of the function \(w(z) = e^{-z} \text{Erfc}(-iz) \) are given, together with an asymptotic formula for estimating the higher zeros.

1. In a previous paper by the present authors [1], the zeros of the function

\[w(z) = e^{-z} \text{Erfc}(-iz) \]

were obtained. In this paper, the values of \(z = x + iy \) for which

\[\frac{dw}{dz} = 0 \]

are given. These points represent singular points of the family of curves

\[\phi(x, y) \equiv |w| = \text{const} \]

in the \(x\)-\(y \) plane since at such a point the direction \(dy/dx \) of these curves is undefined. As in the case of the zeros of \(w(z) \), the saddle points lie in the lower half-plane and are symmetrically located with respect to the \(y \)-axis. For convenience, we introduce the function \(Y(\rho) = (\rho/\sqrt{2})w(i\rho) \), which satisfies the differential equation

\[\frac{dY}{d\rho} = 2\rho Y - 1. \]

Thus, at a saddle point, \(\rho = \rho_n \),

\[2\rho_n Y(\rho_n) = 1. \]

With the aid of the differential equation (4), we can expand \(Y \) in the vicinity of a saddle point as a Taylor series, viz.,

\[Y = \frac{1}{2\rho_n} + \frac{1}{2\rho_n} (\rho - \rho_n)^2 + \frac{1}{3}(\rho - \rho_n)^3 + \cdots. \]

Hence

\[\frac{1}{Y} = 2\rho_n - 2\rho_n(\rho - \rho_n)^2 - \frac{4\rho_n^2}{3}(\rho - \rho_n)^3 + \cdots. \]

Introducing the variable \(t = \rho - 1/2Y \), this may be written

\[t = (\rho - \rho_n) + \rho_n(\rho - \rho_n)^2 + \frac{2\rho_n^2}{3}(\rho - \rho_n)^3 + \cdots \]

\[= (\rho - \rho_n) + \rho(\rho - \rho_n)^2 - \left[1 - \frac{2\rho_n^2}{3} \right](\rho - \rho_n)^3 + \cdots. \]
Therefore

\[\rho - \rho_n = t - \rho t^2 + [1 - 8\rho^2/3]t^3 + \cdots , \]

or

\[\rho_n = \rho - t + \rho t^2 - [1 - 8\rho^2/3]t^3 + \cdots . \]

Equation (3) may also be expressed in terms of \(Y \) as follows:

\[\rho_n = \frac{1}{2Y} \left[1 + t^2 + \frac{4}{3Y} t^3 + \cdots \right]. \]

The above series will converge rapidly if \(\rho \) is close to a saddle point \(\rho_n \). In the next section, an asymptotic approximation to the saddle points is derived which may be used as a first approximation. By computing the corresponding values of \(Y \) and \(t \) and substituting these into Eq. (11), an improved approximation to \(\rho_n \) is obtained. If necessary,* the process may be repeated using the newly computed value of \(\rho \), and continued until convergence is reached. A sample calculation leading to the first saddle point is given at the end of the next section.

2. Asymptotic Approximation to the Saddle Points. At a saddle point, we have, from Eq. (5), \(2\rho Y = 1 \) or

\[w = +i/\pi^{1/2}z. \]

The saddle points are assumed to be of the form \(z = x - iy \), with \(x > 0, \ y > 0 \).

Setting \(w(x + iy) = u + iv \), Eq. (12) is equivalent to

\[2e^{y-x}e^{2ixy} - u + iv = i/\pi^{1/2}z. \]

Replacing \(w \) by the first three terms of the continued fraction gives

\[u - iv = -\frac{i}{\pi^{1/2}} \left[\frac{z^2 - 1}{z(z^2 - 3/2)} \right], \]

and Eq. (13) becomes

\[2e^{y-x}e^{2ixy} \geq -\frac{i}{\pi^{1/2}} \left\{ \frac{1}{z[2z^2 - 3]} \right\}. \]

Since \(\arg(z) = -\pi/4 + \sigma \), it follows that the argument of the right side of (15) is \(\pi/4 - \sigma \). Hence,

\[2xy = (2n + \frac{1}{2})\pi + \beta, \]

where \(0 \leq \beta \leq \pi/2 \) and since, asymptotically, \(x \approx y \), we take, as the limiting value of \(x \) and \(y \),

\[\lambda = ((n + \frac{1}{8})\pi)^{1/2} \]

and set**

* By computing a sufficient number of additional terms in Eq. (11), only one application would be required.

** For the justification of this form, see [1, Eq. (29)].
From Eq. (16) we have, equating magnitudes,

$$2e^{-4\lambda \alpha - 4\sigma p} \leq \frac{1}{2\sqrt{\pi} (x^2 + y^2)^{3/2}} = \frac{1}{2^{5/2} \sqrt{\pi} [\lambda^2 + \alpha^2 + 2\lambda p]^{3/2}}$$

Hence

$$2e^{-4\lambda \alpha} = 1/2^{5/2} \pi^{1/2} \lambda^3;$$

$$\alpha = \ln(128\pi\lambda^5)/8\lambda.$$

The value of p is determined by equating arguments in Eq. (15). We find, denoting the argument of the right side by ϕ,

$$\tan 2xy = 1 + 4\alpha^2 - 8\lambda p;$$

$$\tan \phi = 1 - 6\alpha/\lambda + 3/2\lambda^2.$$

This gives

$$p = (8(\lambda\alpha)^2 - 12(\lambda\alpha) + 3)/16\lambda^3.$$

Thus, the desired asymptotic approximation to three terms is

$$\left\{ \begin{array}{c} x \\ -y \end{array} \right\} = \lambda \pm \frac{1}{8\lambda} \ln(128\pi\lambda^5) + \frac{1}{8} \left[\ln(128\pi\lambda^5) \right]^2 - \frac{3}{8} \ln(128\pi\lambda^5) + \frac{3}{16\lambda^3}.$$

The use of the approximation (25) in conjunction with Eq. (11) is illustrated below for the first saddle point. Equation (17) with $n = 1$ gives

$$\lambda = 1.8799712060$$

and this, when substituted into Eq. (25), gives

$$x \approx 2.5332619139, \quad y \approx -1.2321384069.$$

The corresponding value of Y is

$$Y = -.0766358650 + .1594090127i.$$

Thus

$$t = -.0073085147 + .0144867658i.$$

Substituting in Eq. (11) the values of t and y as given by Eqs. (28) and (29), we arrived at the improved values

$$x \approx 2.5471305433, \quad y \approx -1.2251557198,$$

the corresponding values of Y and t being

$$Y = -.07667898752 + .1594172691i$$

$$t = .00000137615 - .00000251508i.$$
This leads to the next approximation

\[x = 2.547128281828 \quad y = -1.22515709595 \]

which is now correct to eleven figures, the error being \(O(t^4) \).

Aerospace Research Laboratories
Wright-Patterson Air Force Base
Ohio 45433