More about four biquadrates equal one biquadrate
HTML articles powered by AMS MathViewer
- by Kermit Rose and Simcha Brudno PDF
- Math. Comp. 27 (1973), 491-494 Request permission
Abstract:
A computer-generated table of the first 82 numerical solutions of ${A^4} + {B^4} + {C^4} + {D^4} = {E^4}$ is presented. Some regularities are noted.References
-
R. Norrie, University of St. Andrews 500th Anniversary Memorial Volume, Edinburgh, 1911.
- J. O. Patterson, A note on the Diophantine problem of finding four biquadrates whose sum is a biquadrate, Bull. Amer. Math. Soc. 48 (1942), 736β737. MR 6737, DOI 10.1090/S0002-9904-1942-07769-X
- Morgan Ward, Eulerβs problem on sums of three fourth powers, Duke Math. J. 15 (1948), 827β837. MR 27287
- L. J. Lander, T. R. Parkin, and J. L. Selfridge, A survey of equal sums of like powers, Math. Comp. 21 (1967), 446β459. MR 222008, DOI 10.1090/S0025-5718-1967-0222008-0
- John Leech, On $A^{4}+B^{4}+C^{4}+D^{4}=E^{4}$, Proc. Cambridge Philos. Soc. 54 (1958), 554β555. MR 95800
- Simcha Brudno, A further example of $A^{4}+B^{4}+C^{4}+D^{4}=E^{4}$, Proc. Cambridge Philos. Soc. 60 (1964), 1027β1028. MR 166151
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Math. Comp. 27 (1973), 491-494
- MSC: Primary 65A05; Secondary 10-04
- DOI: https://doi.org/10.1090/S0025-5718-1973-0329184-2
- MathSciNet review: 0329184