Computation of Hermite polynomials

Authors:
Laurance C. Eisenhart and George E. Trapp

Journal:
Math. Comp. **27** (1973), 625-632

MSC:
Primary 65D15

DOI:
https://doi.org/10.1090/S0025-5718-1973-0336960-9

MathSciNet review:
0336960

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Projection methods are commonly used to approximate solutions of ordinary and partial differential equations. A basis of the subspace under consideration is needed to apply the projection method. This paper discusses methods of obtaining a basis for piecewise polynomial Hermite subspaces. A simple recursive procedure is derived for generating piecewise Hermite polynomials. These polynomials are then used to obtain approximate solutions of differential equations.

- G. Birkhoff, M. H. Schultz, and R. S. Varga,
*Piecewise Hermite interpolation in one and two variables with applications to partial differential equations*, Numer. Math.**11**(1968), 232–256. MR**226817**, DOI https://doi.org/10.1007/BF02161845 - Åke Björck and Victor Pereyra,
*Solution of Vandermonde systems of equations*, Math. Comp.**24**(1970), 893–903. MR**290541**, DOI https://doi.org/10.1090/S0025-5718-1970-0290541-1 - H. B. Curry and I. J. Schoenberg,
*On Pólya frequency functions. IV. The fundamental spline functions and their limits*, J. Analyse Math.**17**(1966), 71–107. MR**218800**, DOI https://doi.org/10.1007/BF02788653 - G. Galimberti and V. Pereyra,
*Solving confluent Vandermonde systems of Hermite type*, Numer. Math.**18**(1971/72), 44–60. MR**300417**, DOI https://doi.org/10.1007/BF01398458 - J.-J. Goël,
*Construction of basic functions for numerical utilisation of Ritz’s method*, Numer. Math.**12**(1968), 435–447. MR**256580**, DOI https://doi.org/10.1007/BF02161367 - Sven-Ȧke Gustafson,
*Rapid computation of general interpolation formulas and mechanical quadrature rules*, Comm. ACM**14**(1971), 797–801. MR**0311069**, DOI https://doi.org/10.1145/362919.362941 - J. W. Jerome and R. S. Varga,
*Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems*, Theory and Applications of Spline Functions (Proceedings of Seminar, Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968) Academic Press, New York, 1969, pp. 103–155. MR**0239328** - J.-L. Lavoie and R. Michaud,
*Explicit expressions for the determinants of certain matrices*, Math. Comp.**24**(1970), 151–154. MR**257106**, DOI https://doi.org/10.1090/S0025-5718-1970-0257106-9
F. R. Loscalzo, - Gilbert Strang,
*The finite element method and approximation theory*, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 547–583. MR**0287723** - J. F. Traub,
*Associated polynomials and uniform methods for the solution of linear problems*, SIAM Rev.**8**(1966), 277–301. MR**207238**, DOI https://doi.org/10.1137/1008061 - Richard S. Varga,
*Hermite interpolation-type Ritz methods for two-point boundary value problems*, Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965) Academic Press, New York, 1966, pp. 365–373. MR**0205475** - Richard S. Varga,
*Accurate numerical methods for nonlinear boundary value problems*, Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 152–167. MR**0267748** - Kôsaku Yosida,
*Functional analysis*, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR**0180824**

*Numerical Solution of Ordinary Differential Equations by Spline Functions (SPLINDIF)*, Technical Summary Report #842, Mathematics Research Center, U. S. Army, University of Wisconsin, Madison, Wis., 1968. F. R. Loscalzo,

*On the Use of Spline Functions for the Numerical Solution of Ordinary Differential Equations*, Ph.D. Thesis, University of Wisconsin, Madison, Wis., 1968; also in Technical Summary Report #869, Mathematics Research Center, U.S. Army, University of Wisconsin, Madison, Wis., 1968. F. R. Loscalzo & I. J. Schoenberg,

*On the use of spline functions for the approximation of solutions of ordinary differential equations*, Technical Summary Report #723, Mathematics Research Center, U.S. Army, University of Wisconsin, Madison, Wis., 1967.

Retrieve articles in *Mathematics of Computation*
with MSC:
65D15

Retrieve articles in all journals with MSC: 65D15

Additional Information

Keywords:
Hermite polynomials,
piecewise polynomials,
projection method

Article copyright:
© Copyright 1973
American Mathematical Society