Reviews and Descriptions of Tables and Books
Journal:
Math. Comp. 27 (1973), 669680
DOI:
https://doi.org/10.1090/S0025571873997007
Fulltext PDF Free Access
References  Additional Information

T. J. Dekker and W. Hoffman, Algol 60 Procedures in Numerical Algebra, Parts I and II, Mathematisch Centrum, Amsterdam, Holland, 1968.
 H. H. Goldstine, F. J. Murray, and J. von Neumann, The Jacobi method for real symmetric matrices, J. Assoc. Comput. Mach. 6 (1959), 59–96. MR 102171, DOI https://doi.org/10.1145/320954.320960
 R. Lienard, Tables Fondamentales à 50 Décimales des Sommes $S_n$, $u_n$, $\Sigma _n$, Centre de Documentation Universitaire, Paris, 1948 (French). MR 0026404 Alden McLellan IV, Tables of the Riemann Zeta Function and Related Functions, Desert Research Institute, University of Nevada, Reno, Nevada, ms. deposited in UMT file. (See Math. Comp., v. 22, 1968, pp. 687688, RMT 69.)
 John W. Wrench Jr., Concerning two series for the gamma function, Math. Comp. 22 (1968), 617–626. MR 237078, DOI https://doi.org/10.1090/S00255718196802370784 A. H. Morris, Jr., Table of the Riemann Zeta Function for Integer Arguments, ms. deposited in the UMT file. (See Math. Comp., v. 27, 1973, p. 673, RMT 32.)
 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford, at the Clarendon Press, 1947. MR 0022294 S. L. Kalla, A. Battig & Raúl Luccioni, "Production of heat in cylinders," Rev. Ci. Mat. Univ. Lourenço Marques Ser. A, v. 4, 1973.
 Henry E. Fettis and James C. Caslin, Tables of toroidal harmonics, I: Orders 05, all significant degrees., Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, WrightPatterson Air Force Base, Ohio, 1969. ARL 690025. MR 0245169
 Henry E. Fettis and James C. Caslin, Tables of toroidal harmonics. II. Orders 5—10, all significant degrees, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, WrightPatterson Air Force Base, Ohio, 1969. ARL 690209. MR 0256530
 Henry E. Fettis, A new method for computing toroidal harmonics, Math. Comp. 24 (1970), 667–670. MR 273786, DOI https://doi.org/10.1090/S00255718197002737866 Sol Weintraub, Distribution of Primes between ${10^{14}}$ and ${10^{14}} + {10^8}$, UMT 27, Math. Comp., v. 26, 1972, p. 596.
 David C. Mapes, Fast method for computing the number of primes less than a given limit, Math. Comp. 17 (1963), 179–185. MR 158508, DOI https://doi.org/10.1090/S00255718196301585088 D. H. Lehmer, UMT 3, MTAC, v. 13, 1959, pp. 5657.
 Harry S. Hayashi, Computer investigation of difference sets, Math. Comp. 19 (1965), 73–78. MR 171368, DOI https://doi.org/10.1090/S00255718196501713686
Additional Information
Article copyright:
© Copyright 1973
American Mathematical Society