Primitive binary polynomials
Author:
Wayne Stahnke
Journal:
Math. Comp. 27 (1973), 977980
MSC:
Primary 12C05; Secondary 1204
DOI:
https://doi.org/10.1090/S00255718197303277227
MathSciNet review:
0327722
Fulltext PDF Free Access
Abstract  References  Similar Articles  Additional Information
Abstract: One primitive polynomial modulo two is listed for each degree n through $n = 168$. Each polynomial has the minimum number of terms possible for its degree. The method used to generate the list is described.

P. H. R. Scholefield, "Shift registers generating maximumlength sequences," Electronic Technology, v. 37, 1960, pp. 389394.
 Solomon W. Golomb, Shift register sequences, HoldenDay, Inc., San Francisco, Calif.CambridgeAmsterdam, 1967. With portions coauthored by Lloyd R. Welch, Richard M. Goldstein, and Alfred W. Hales. MR 0242575
 E. J. Watson, Primitive polynomials $({\rm mod}\ 2)$, Math. Comp. 16 (1962), 368–369. MR 148256, DOI https://doi.org/10.1090/S00255718196201482561
 Elwyn R. Berlekamp, Algebraic coding theory, McGrawHill Book Co., New YorkToronto, Ont.London, 1968. MR 0238597 N. Zierler & J. Brillhart, "On primitive trinomials $({\operatorname {Mod}}\;2)$," Information Control, v. 13, 1968, pp. 541554; II, v. 14, 1969, pp. 566569. MR 38 #5750; MR 39 #5521. R. W. Marsh, Table of Irreducible Polynomials Over $GF(2)$ Through Degree 19, Office of Technical Services, Department of Commerce, Washington, D. C., October 24, 1957.
 Hans Riesel, En bok om primtal, Studentlitteratur, Lund, 1968 (Swedish). MR 0269612 J. Brillhart, "Some miscellaneous factorizations," Math. Comp., v. 17, 1963, pp. 447450.
 John Brillhart and J. L. Selfridge, Some factorizations of $2^{n}\pm 1$ and related results, Math. Comp. 21 (1967), 8796; corrigendum, ibid. 21 (1967), 751. MR 0224532, DOI https://doi.org/10.1090/S0025571867998985
 K. R. Isemonger, Complete factorization of $2^{159}1$, Math. Comp. 15 (1961), 295–296. MR 124263, DOI https://doi.org/10.1090/S00255718196101242639
 K. R. Isemonger, Some additional factorizations of $2^{n}\pm 1$, Math. Comp. 19 (1965), 145–146. MR 170846, DOI https://doi.org/10.1090/S00255718196501708463
 M. Kraitchik, Introduction à la théorie des nombres, GauthierVillars, Paris, 1952 (French). MR 0051845
 Maurice Kraitchik, On the factorization of $2^n\pm 1$, Scripta Math. 18 (1952), 39–52. MR 49113
 Raphael M. Robinson, Some factorizations of numbers of the form $2^{n}\pm 1$, Math. Tables Aids Comput. 11 (1957), 265–268. MR 94313, DOI https://doi.org/10.1090/S00255718195700943136
Retrieve articles in Mathematics of Computation with MSC: 12C05, 1204
Retrieve articles in all journals with MSC: 12C05, 1204
Additional Information
Keywords:
Primitive polynomials,
finite field,
Mersenne numbers,
shiftregister sequences
Article copyright:
© Copyright 1973
American Mathematical Society