On the $3$-rank of quadratic fields and the Euler product
HTML articles powered by AMS MathViewer
- by Carol Neild and Daniel Shanks PDF
- Math. Comp. 28 (1974), 279-291 Request permission
Abstract:
This paper covers many (closely related) topics: the distribution of the 3-Sylow subgroups of imaginary quadratic fields; the possibility of finding 3-ranks greater than 4; some questions concerning ${a^3} = {b^2} + {c^2}D$; and the convergence of Euler products and its relation to the extended Riemann hypothesis. Two programs that were used in this investigation are described.References
- Daniel Shanks and Peter Weinberger, A quadratic field of prime discriminant requiring three generators for its class group, and related theory, Acta Arith. 21 (1972), 71–87. MR 309899, DOI 10.4064/aa-21-1-71-87
- Daniel Shanks, New types of quadratic fields having three invariants divisible by $3$, J. Number Theory 4 (1972), 537–556. MR 313220, DOI 10.1016/0022-314X(72)90027-3
- Daniel Shanks and Richard Serafin, Quadratic fields with four invariants divisible by $3$, Math. Comp. 27 (1973), 183–187. MR 330097, DOI 10.1090/S0025-5718-1973-0330097-0
- Peter Roquette, On class field towers, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 231–249. MR 0218331
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, Bull. London Math. Soc. 1 (1969), 345–348. MR 254010, DOI 10.1112/blms/1.3.345
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405–420. MR 491593, DOI 10.1098/rspa.1971.0075
- Daniel Shanks, Class number, a theory of factorization, and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR 0316385 A. Scholz, "Über die Beziehung der Klassenzahlen quadratischer Körper zueinander," Crelle’s J., v. 166, 1932, pp. 201-203.
- L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 0249355
- Georges Gras, Extensions abéliennes non ramifiées de degré premier d’un corps quadratique, Bull. Soc. Math. France 100 (1972), 177–193 (French). MR 302604 Carol C. Neild, SPEEDY, A Code for Estimating the Euler Product of a Dirichlet L Function, CMD-8-73, 1973, Naval Ship R&D Center, Bethesda, Maryland.
- Daniel Shanks, Five number-theoretic algorithms, Proceedings of the Second Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972) Congressus Numerantium, No. VII, Utilitas Math., Winnipeg, Man., 1973, pp. 51–70. MR 0371855 Richard H. Serafin, Two Subroutines for the Solution of $R \equiv {A^H}$ (modulo N) and ${R^2} \equiv A$ (modulo P) and their Applications, CMD-7-73, 1973, Naval Ship R&D Center, Bethesda, Maryland. Carol C. Neild, CUROID, A Code for Computing the Cube Roots of the Identity of the Class Group of an Imaginary Quadratic Field, CMD-9-73, 1973, Naval Ship R&D Center, Bethesda, Maryland.
- Daniel Shanks, The infrastructure of a real quadratic field and its applications, Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972) Univ. Colorado, Boulder, Colo., 1972, pp. 217–224. MR 0389842
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp. 28 (1974), 279-291
- MSC: Primary 12A25; Secondary 12A65
- DOI: https://doi.org/10.1090/S0025-5718-1974-0352042-5
- MathSciNet review: 0352042