Sums of distinct primes from congruence classes modulo $12$
HTML articles powered by AMS MathViewer
- by Robert E. Dressler, Andrzej Mąkowski and Thomas Parker PDF
- Math. Comp. 28 (1974), 651-652 Request permission
Abstract:
It is shown that every integer greater than 1969, 1349, 1387, 1475 is a sum of distinct primes of the form $12k + 1,12k + 5,12k + 7,12k + 11$, respectively. Furthermore, these lower bounds are best possible.References
- Robert Breusch, Zur Verallgemeinerung des Bertrandschen Postulates, daßzwischen $x$ und 2 $x$ stets Primzahlen liegen, Math. Z. 34 (1932), no. 1, 505–526 (German). MR 1545270, DOI 10.1007/BF01180606
- A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125–126 (English, with Russian summary). MR 0117209
- Karl Molsen, Zur Verallgemeinerung des Bertrandschen Postulates, Deutsche Math. 6 (1941), 248–256 (German). MR 17770
- Hans-Egon Richert, Über Zerlegungen in paarweise verschiedene Zahlen, Norsk Mat. Tidsskr. 31 (1949), 120–122 (German). MR 34807
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp. 28 (1974), 651-652
- MSC: Primary 10J15
- DOI: https://doi.org/10.1090/S0025-5718-1974-0340206-6
- MathSciNet review: 0340206