Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Sums of distinct primes from congruence classes modulo $12$
HTML articles powered by AMS MathViewer

by Robert E. Dressler, Andrzej Mąkowski and Thomas Parker PDF
Math. Comp. 28 (1974), 651-652 Request permission

Abstract:

It is shown that every integer greater than 1969, 1349, 1387, 1475 is a sum of distinct primes of the form $12k + 1,12k + 5,12k + 7,12k + 11$, respectively. Furthermore, these lower bounds are best possible.
References
  • Robert Breusch, Zur Verallgemeinerung des Bertrandschen Postulates, daßzwischen $x$ und 2 $x$ stets Primzahlen liegen, Math. Z. 34 (1932), no. 1, 505–526 (German). MR 1545270, DOI 10.1007/BF01180606
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125–126 (English, with Russian summary). MR 0117209
  • Karl Molsen, Zur Verallgemeinerung des Bertrandschen Postulates, Deutsche Math. 6 (1941), 248–256 (German). MR 17770
  • Hans-Egon Richert, Über Zerlegungen in paarweise verschiedene Zahlen, Norsk Mat. Tidsskr. 31 (1949), 120–122 (German). MR 34807
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 10J15
  • Retrieve articles in all journals with MSC: 10J15
Additional Information
  • © Copyright 1974 American Mathematical Society
  • Journal: Math. Comp. 28 (1974), 651-652
  • MSC: Primary 10J15
  • DOI: https://doi.org/10.1090/S0025-5718-1974-0340206-6
  • MathSciNet review: 0340206