Error analysis of a computation of Euler’s constant
HTML articles powered by AMS MathViewer
- by W. A. Beyer and M. S. Waterman PDF
- Math. Comp. 28 (1974), 599-604 Request permission
Abstract:
A complete error analysis of a computation of $\gamma$, Euler’s constant, is given. The results have been used to compute $\gamma$ to 7114 places and this value has been deposited in the UMT file.References
- W. A. Beyer and M. S. Waterman, Ergodic computations with continued fractions and Jacobi’s algorithm, Numer. Math. 19 (1972), 195–205. MR 303696, DOI 10.1007/BF01404688 T. J. I’A. Bromwich, An Introduction to the Theory of Infinite Series, 2nd rev. ed., Macmillan, London, 1949.
- K. Y. Choong, D. E. Daykin, and C. R. Rathbone, Rational approximations to $\pi$, Math. Comp. 25 (1971), 387–392. MR 300981, DOI 10.1090/S0025-5718-1971-0300981-0 R. Courant, Differential and Integral Calculus. Vol. I, 2nd rev. ed., Interscience, New York, 1937.
- William Feller, An introduction to probability theory and its applications. Vol. I, 3rd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0228020
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- Dura W. Sweeney, On the computation of Euler’s constant, Math. Comp. 17 (1963), 170–178. MR 160308, DOI 10.1090/S0025-5718-1963-0160308-X
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp. 28 (1974), 599-604
- MSC: Primary 65D20
- DOI: https://doi.org/10.1090/S0025-5718-1974-0341809-5
- MathSciNet review: 0341809