## Numerical computation of a generalized exponential integral function

HTML articles powered by AMS MathViewer

- by W. F. Breig and A. L. Crosbie PDF
- Math. Comp.
**28**(1974), 575-579 Request permission

## Abstract:

Series expansions and recurrence relations suitable for numerical computation are developed for the generalized exponential integral functions. Tables of these functions are presented in the microfiche section of this issue.## References

- M. G. Smith,
*The transport equation with plane symmetry and isotropic scattering*, Proc. Cambridge Philos. Soc.**60**(1964), 909–921. MR**182845**, DOI 10.1017/s0305004100038378 - G. E. Hunt,
*The transport equation of radiative transfer with axial symmetry*, SIAM J. Appl. Math.**16**(1968), 228–237. MR**225550**, DOI 10.1137/0116020
G. B. Rybicki, "The searchlight problem with isotropic scattering," - Yudell L. Luke,
*Integrals of Bessel functions*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1962. MR**0141801** - Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR**0167642** - M. M. Agrest and M. S. Maksimov,
*Theory of incomplete cylindrical functions and their applications*, Die Grundlehren der mathematischen Wissenschaften, Band 160, Springer-Verlag, New York-Heidelberg, 1971. Translated from the Russian by H. E. Fettis, J. W. Goresh and D. A. Lee. MR**0346209**
S. Chapman, "The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth,"

*J. Quant. Spectrosc. Radiat. Transfer*, v. 11, 1971, pp. 827-849. W. F. Breig & A. L. Crosbie, "Two-dimensional radiative equilibrium,"

*J. Math. Anal. Appl.*(To appear.)

*Tables of the Generalized Exponential Integral Functions*, Harvard University, Annals of the Computation Laboratory. Vol. 21, Harvard Univ. Press, Cambridge, Mass., 1949.

*Proc. Phys. Soc.*, v. 43, 1931, pp. 483-501.

## Additional Information

- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp.
**28**(1974), 575-579 - MSC: Primary 65D20
- DOI: https://doi.org/10.1090/S0025-5718-1974-0341811-3
- MathSciNet review: 0341811