A stable algorithm for computing the inverse error function in the “tail-end” region
HTML articles powered by AMS MathViewer
- by Henry E. Fettis PDF
- Math. Comp. 28 (1974), 585-587 Request permission
Corrigendum: Math. Comp. 29 (1975), 673-674.
Corrigendum: Math. Comp. 29 (1975), 673.
Abstract:
An iterative algorithm, simple enough to be executed on a desk top automatic computer, is given for computing the inverse of the function $x = {\operatorname {erfc}}(y)$ for small values of x.References
- J. R. Philip, The function inverfc $\theta$, Austral. J. Phys. 13 (1960), 13–20. MR 118857, DOI 10.1071/PH600013
- Anthony Strecok, On the calculation of the inverse of the error function, Math. Comp. 22 (1968), 144–158. MR 223070, DOI 10.1090/S0025-5718-1968-0223070-2
- H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Co., Inc., New York, N. Y., 1948. MR 0025596
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp. 28 (1974), 585-587
- MSC: Primary 65D20
- DOI: https://doi.org/10.1090/S0025-5718-1974-0341812-5
- MathSciNet review: 0341812