A stable algorithm for computing the inverse error function in the “tail-end” region
Author:
Henry E. Fettis
Journal:
Math. Comp. 28 (1974), 585-587
MSC:
Primary 65D20
DOI:
https://doi.org/10.1090/S0025-5718-1974-0341812-5
Corrigendum:
Math. Comp. 29 (1975), 673-674.
Corrigendum:
Math. Comp. 29 (1975), 673.
MathSciNet review:
0341812
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An iterative algorithm, simple enough to be executed on a desk top automatic computer, is given for computing the inverse of the function $x = {\operatorname {erfc}}(y)$ for small values of x.
- J. R. Philip, The function inverfc $\theta $, Austral. J. Phys. 13 (1960), 13–20. MR 118857
- Anthony Strecok, On the calculation of the inverse of the error function, Math. Comp. 22 (1968), 144–158. MR 223070, DOI https://doi.org/10.1090/S0025-5718-1968-0223070-2
- H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR 0025596
Retrieve articles in Mathematics of Computation with MSC: 65D20
Retrieve articles in all journals with MSC: 65D20
Additional Information
Keywords:
Inverse error function,
inverse probability integral,
error function,
probability integral
Article copyright:
© Copyright 1974
American Mathematical Society