Evaluation of a constant associated with a parking problem
HTML articles powered by AMS MathViewer
- by M. Lal and P. Gillard PDF
- Math. Comp. 28 (1974), 561-564 Request permission
Abstract:
A constant associated with a random space filling problem is computed to 19D. This is achieved by numerically solving an integral-difference equation.References
- Alfréd Rényi, On a one-dimensional problem concerning random space filling, Magyar Tud. Akad. Mat. Kutató Int. Közl. 3 (1958), no. 1-2, 109–127 (Hungarian, with English and Russian summaries). MR 104284
- A. Dvoretzky and H. Robbins, On the “parking” problem, Magyar Tud. Akad. Mat. Kutató Int. Közl. 9 (1964), 209–225 (English, with Russian summary). MR 173275 J. J. A. Beenakker, The Differential-Difference Equation $\alpha xf’(x) + f(x - 1) = 0$, Ph.D. Thesis, Technische Hogeschool, Eindhoven, The Netherlands, 1966.
- Ilona Palásti, On some random space filling problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 353–360 (English, with Russian summary). MR 146947 Mohan Lal & Paul Gillard, "Numerical solution of two differential-difference equations on analytic theory of numbers," Conference on Numerical Solution of Differential Equations, Lecture Notes in Math., vol. 109, Springer-Verlag, Berlin and New York, 1969, pp. 179-187.
- Mathematical methods for digital computers, John Wiley & Sons, Inc., New York-London, 1960. MR 0117906
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp. 28 (1974), 561-564
- MSC: Primary 65D20
- DOI: https://doi.org/10.1090/S0025-5718-1974-0341814-9
- MathSciNet review: 0341814