Irregular prime divisors of the Bernoulli numbers
HTML articles powered by AMS MathViewer
- by Wells Johnson PDF
- Math. Comp. 28 (1974), 653-657 Request permission
Abstract:
If p is an irregular prime, $p < 8000$, then the indices 2n for which the Bernoulli quotients ${B_{2n}}/2n$ are divisible by ${p^2}$ are completely characterized. In particular, it is always true that $2n > p$ and that ${B_{2n}}/2n\;\nequiv ({B_{2n + p - 1}}/2n + p - 1)\pmod {p^2}$ if (p,2n) is an irregular pair. As a result, we obtain another verification that the cyclotomic invariants ${\mu _p}$ of Iwasawa all vanish for primes $p < 8000$.References
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- L. Carlitz, Note on irregular primes, Proc. Amer. Math. Soc. 5 (1954), 329–331. MR 61124, DOI 10.1090/S0002-9939-1954-0061124-6
- Kenkichi Iwasawa, On some invariants of cyclotomic fields, Amer. J. Math. 80 (1958), 773-783; erratum 81 (1958), 280. MR 0124317
- Kenkichi Iwasawa and Charles C. Sims, Computation of invariants in the theory of cyclotomic fields, J. Math. Soc. Japan 18 (1966), 86–96. MR 202700, DOI 10.2969/jmsj/01810086
- Wells Johnson, On the vanishing of the Iwasawa invariant $\mu _{p}$ for $p<8000$, Math. Comp. 27 (1973), 387–396. MR 384748, DOI 10.1090/S0025-5718-1973-0384748-5
- Emma Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. (2) 39 (1938), no. 2, 350–360. MR 1503412, DOI 10.2307/1968791
- Tauno Metsänkylä, Note on the distribution of irregular primes, Ann. Acad. Sci. Fenn. Ser. A I No. 492 (1971), 7. MR 0274403
- Hugh L. Montgomery, Distribution of irregular primes, Illinois J. Math. 9 (1965), 553–558. MR 181633
- F. Pollaczek, Über die irregulären Kreiskörper der $l$-ten und $l^2$-ten Einheitswurzeln, Math. Z. 21 (1924), no. 1, 1–38 (German). MR 1544682, DOI 10.1007/BF01187449 J. Uspensky & M. Heaslet, Elementary Number Theory, McGraw-Hill, New York, 1939. MR 1, 38. H. S. Vandiver, "Is there an infinity of regular primes?," Scripta Math., v. 21, 1955, pp. 306-309.
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp. 28 (1974), 653-657
- MSC: Primary 10A40; Secondary 12A35, 12A50
- DOI: https://doi.org/10.1090/S0025-5718-1974-0347727-0
- MathSciNet review: 0347727