## Stable approximations for hyperbolic systems with moving internal boundary conditions

HTML articles powered by AMS MathViewer

- by M. Goldberg and S. Abarbanel PDF
- Math. Comp.
**28**(1974), 413-447 Request permission

## Abstract:

The work of Kreiss on the stability theory of difference schemes for the mixed initial boundary value problem for linear hyperbolic systems is extended to deal with the case of the pure initial value problem with an internal boundary. The case of an internal boundary ${X_B}$ that moves with constant speed*c*is treated, i.e., ${X_B} = {X_0} + ct$. In particular, the stability of "hybrid" schemes is studied by using the Lax-Wendroff scheme at points that are not on the internal boundary, while using a first order accurate scheme at the internal boundary points. Numerical evidence is given that the results of the linear stability analysis describes the qualitative behavior of such schemes for nonlinear cases, when the internal boundary is a shock.

## References

- S. Abarbanel and M. Goldberg,
*Numerical solution of quasi-conservative hyperbolic systems—the cylindrical shock problem*, J. Comput. Phys.**10**(1972), 1–21. MR**331974**, DOI 10.1016/0021-9991(72)90087-3 - S. Abarbanel and G. Zwas,
*An iterative finite-difference method for hyperbolic systems*, Math. Comp.**23**(1969), 549–565. MR**247783**, DOI 10.1090/S0025-5718-1969-0247783-2 - Melvyn Ciment,
*Stable matching of difference schemes*, SIAM J. Numer. Anal.**9**(1972), 695–701. MR**319383**, DOI 10.1137/0709058
M. Goldberg & S. Abarbanel, - Moshe Goldberg,
*A note on the stability of an iterative finite-difference method for hyperbolic systems*, Math. Comp.**27**(1973), 41–44. MR**341887**, DOI 10.1090/S0025-5718-1973-0341887-2 - Bertil Gustafsson, Heinz-Otto Kreiss, and Arne Sundström,
*Stability theory of difference approximations for mixed initial boundary value problems. II*, Math. Comp.**26**(1972), 649–686. MR**341888**, DOI 10.1090/S0025-5718-1972-0341888-3 - A. Harten and G. Zwas,
*Self-adjusting hybrid schemes for shock computations*, J. Comput. Phys.**9**(1972), 568–583. MR**309339**, DOI 10.1016/0021-9991(72)90012-5 - Heinz-Otto Kreiss,
*Difference approximations for the initial-boundary value problem for hyperbolic differential equations*, Numerical Solutions of Nonlinear Differential Equations (Proc. Adv. Sympos., Madison, Wis., 1966) John Wiley & Sons, Inc., New York, N.Y., 1966, pp. 141–166. MR**0214305** - Heinz-Otto Kreiss,
*Stability theory for difference approximations of mixed initial boundary value problems. I*, Math. Comp.**22**(1968), 703–714. MR**241010**, DOI 10.1090/S0025-5718-1968-0241010-7 - Peter D. Lax,
*Weak solutions of nonlinear hyperbolic equations and their numerical computation*, Comm. Pure Appl. Math.**7**(1954), 159–193. MR**66040**, DOI 10.1002/cpa.3160070112 - Peter Lax and Burton Wendroff,
*Systems of conservation laws*, Comm. Pure Appl. Math.**13**(1960), 217–237. MR**120774**, DOI 10.1002/cpa.3160130205 - Robert D. Richtmyer and K. W. Morton,
*Difference methods for initial-value problems*, 2nd ed., Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455**

*A Note on Discontinuities in a Nonlinear Hyperbolic Equation with Piecewise Smooth Data*, Dept. of Math. Sciences, Tel Aviv Univ. Report, 1972.

## Additional Information

- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp.
**28**(1974), 413-447 - MSC: Primary 65N10
- DOI: https://doi.org/10.1090/S0025-5718-1974-0381343-X
- MathSciNet review: 0381343