Computation of the ideal class group of certain complex quartic fields

Author:
Richard B. Lakein

Journal:
Math. Comp. **28** (1974), 839-846

MSC:
Primary 12A50

DOI:
https://doi.org/10.1090/S0025-5718-1974-0374090-1

MathSciNet review:
0374090

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The ideal class group of quartic fields , where , is calculated by a method adapted from the method of cycles of reduced ideals for real quadratic fields. The class number is found in this way for 5000 fields a prime of *F*. A tabulation of the distribution of class numbers shows a striking similarity to that for real quadratic fields with prime discriminant. Also, two fields were found with noncyclic ideal class group .

**[1]**P. G. L. Dirichlet, "Recherches sur les formes quadratiques à coefficients et à indéterminées complexes,"*Werke*I, pp. 533-618.**[2]**David Hilbert,*Ueber den Dirichlet’schen biquadratischen Zahlkörper*, Math. Ann.**45**(1894), no. 3, 309–340 (German). MR**1510866**, https://doi.org/10.1007/BF01446682**[3]**A. Hurwitz,*Über die Entwicklung complexer Grössen in Kettenbrüche*, Acta Math.**11**(1887), no. 1-4, 187–200 (German). MR**1554754**, https://doi.org/10.1007/BF02418048**[4]**Julius Hurwitz,*Über die Reduction der Binären Quadratischen Formen mit Complexen Coefficienten und Variabeln*, Acta Math.**25**(1902), no. 1, 231–290 (German). MR**1554944**, https://doi.org/10.1007/BF02419027**[5]**E. L. Ince,*Cycles of Reduced Ideals in Quadratic Fields*, British Association Tables, vol. 4, London, 1934.**[6]**Sigekatu Kuroda,*Über den Dirichletschen Körper*, J. Fac. Sci. Imp. Univ. Tokyo Sect. I.**4**(1943), 383–406 (German). MR**0021031****[7]**R. B. Lakein,*A Gauss bound for a class of biquadratic fields*, J. Number Theory**1**(1969), 108–112. MR**240073**, https://doi.org/10.1016/0022-314X(69)90028-6**[8]**R. B. Lakein, "Class numbers and units of complex quartic fields," in*Computers in Number Theory*, Academic Press, London, 1971, pp. 167-172.**[9]**G. B. Mathews, "A theory of binary quadratic arithmetical forms with complex integral coefficients,"*Proc. London Math. Soc.*(2), v. 11, 1913, pp. 329-350.**[10]**Daniel Shanks,*On Gauss’s class number problems*, Math. Comp.**23**(1969), 151–163. MR**262204**, https://doi.org/10.1090/S0025-5718-1969-0262204-1**[11]**Daniel Shanks and Peter Weinberger,*A quadratic field of prime discriminant requiring three generators for its class group, and related theory*, Acta Arith.**21**(1972), 71–87. MR**309899**, https://doi.org/10.4064/aa-21-1-71-87

Retrieve articles in *Mathematics of Computation*
with MSC:
12A50

Retrieve articles in all journals with MSC: 12A50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0374090-1

Article copyright:
© Copyright 1974
American Mathematical Society