The simplest cubic fields
HTML articles powered by AMS MathViewer
- by Daniel Shanks PDF
- Math. Comp. 28 (1974), 1137-1152 Request permission
Abstract:
The cyclic cubic fields generated by ${x^3} = a{x^2} + (a + 3)x + 1$ are studied in detail. The regulators are relatively small and are known at once. The class numbers are always of the form ${A^2} + 3{B^2}$, are relatively large and easy to compute. The class groups are usually easy to determine since one has the theorem that if m is divisible only by ${\text {primes}} \equiv 2\pmod 3$, then the m-rank of the class group is even. Fields with different 3-ranks are treated separately.References
- H. J. Godwin and P. A. Samet, A table of real cubic fields, J. London Math. Soc. 34 (1959), 108–110. MR 100579, DOI 10.1112/jlms/s1-34.1.108
- H. J. Godwin, The determination of the class-numbers of totally real cubic fields, Proc. Cambridge Philos. Soc. 57 (1961), 728–730. MR 126437, DOI 10.1017/s0305004100035854
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- H. J. Godwin, The determination of units in totally real cubic fields, Proc. Cambridge Philos. Soc. 56 (1960), 318–321. MR 117216, DOI 10.1017/s0305004100034617
- Carol Neild and Daniel Shanks, On the $3$-rank of quadratic fields and the Euler product, Math. Comp. 28 (1974), 279–291. MR 352042, DOI 10.1090/S0025-5718-1974-0352042-5
- Daniel Shanks, On the conjecture of Hardy & Littlewood concerning the number of primes of the form $n^{2}+a$, Math. Comp. 14 (1960), 320–332. MR 120203, DOI 10.1090/S0025-5718-1960-0120203-6
- Daniel Shanks and Peter Weinberger, A quadratic field of prime discriminant requiring three generators for its class group, and related theory, Acta Arith. 21 (1972), 71–87. MR 309899, DOI 10.4064/aa-21-1-71-87
- B. D. Beach, H. C. Williams, and C. R. Zarnke, Some computer results on units in quadratic and cubic fields, Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont., 1971) Lakehead Univ., Thunder Bay, Ont., 1971, pp. 609–648. MR 0337887 FRANK GERTH III, Sylow 3-Subgroups of Ideal Class Groups of Certain Cubic Fields, Thesis, Princeton University, Princeton, N. J., 1972. GEORGE GRAS, Sur les l-Classes d’Idéaux dans les Extensions Cycliques Relative de Degré Premier l, Thesis, Grenoble, 1972.
- Pierre Barrucand and Harvey Cohn, A rational genus, class number divisibility, and unit theory for pure cubic fields, J. Number Theory 2 (1970), 7–21. MR 249398, DOI 10.1016/0022-314X(70)90003-X
- Pierre Barrucand and Harvey Cohn, Remarks on principal factors in a relative cubic field, J. Number Theory 3 (1971), 226–239. MR 276197, DOI 10.1016/0022-314X(71)90040-0
- Daniel Shanks and Larry P. Schmid, Variations on a theorem of Landau. I, Math. Comp. 20 (1966), 551–569. MR 210678, DOI 10.1090/S0025-5718-1966-0210678-1
- Morris Newman, A table of the first factor for prime cyclotomic fields, Math. Comp. 24 (1970), 215–219. MR 257029, DOI 10.1090/S0025-5718-1970-0257029-5
- Heinrich W. Leopoldt, Zur Geschlechtertheorie in abelschen Zahlkörpern, Math. Nachr. 9 (1953), 351–362 (German). MR 56032, DOI 10.1002/mana.19530090604
- M. N. Gras, N. Moser, and J. J. Payan, Approximation algorithmique du groupe des classes de certains corps cubiques cycliques, Acta Arith. 23 (1973), 295–300 (French). MR 330099, DOI 10.4064/aa-23-3-295-300
- Helmut Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern, Abh. Deutsch. Akad. Wiss. Berlin. Math.-Nat. Kl. 1948 (1948), no. 2, 95 pp. (1950) (German). MR 33863 MARIE-NICOLE MONTOUCHET, Sur le Nombre de Classes du Sous-Corps Cubique de ${Q^{(p)}}(p \equiv 1(3))$, Thesis, Grenoble, 1971.
- Marie-Nicole Gras, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de $\textbf {Q}$, J. Reine Angew. Math. 277 (1975), 89–116 (French). MR 389845, DOI 10.1515/crll.1975.277.89
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp. 28 (1974), 1137-1152
- MSC: Primary 12A50; Secondary 12A30
- DOI: https://doi.org/10.1090/S0025-5718-1974-0352049-8
- MathSciNet review: 0352049