Interior estimates for Ritz-Galerkin methods
HTML articles powered by AMS MathViewer
- by Joachim A. Nitsche and Alfred H. Schatz PDF
- Math. Comp. 28 (1974), 937-958 Request permission
Abstract:
Interior a priori error estimates in Sobolev norms are derived from interior Ritz-Galerkin equations which are common to a class of methods used in approximating solutions of second order elliptic boundary value problems. The estimates are valid for a large class of piecewise polynomial subspaces used in practice, which are defined on both uniform and nonuniform meshes. It is shown that the error in an interior domain $\Omega$ can be estimated with the best order of accuracy that is possible locally for the subspaces used plus the error in a weaker norm over a slightly larger domain which measures the effects from outside of the domain $\Omega$. Additional results are given in the case when the subspaces are defined on a uniform mesh. Applications to specific boundary value problems are given.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 0178246 J. P. AUBIN, "Approximation des problèmes aux limites non homogènes et régularité de la convergence," Calcolo, v. 6, 1969, pp. 117—139. I. BABUŠKA, The Finite Element Method with Lagrangian Multipliers, Technical Note BN-724, Institute for Fluid Dynamics and Appl. Math., University of Maryland, College Park, Md., 1972. I. BABUŠKA, Numerical Solution of Boundary Value Problems by the Perturbed Variational Principle, Technical Note BN-624, University of Maryland, College Park, Md., 1969.
- Ju. M. Berezans′kiĭ, Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. MR 0222718
- J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math. 16 (1970/71), 362–369. MR 290524, DOI 10.1007/BF02165007
- J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525–549. MR 366029, DOI 10.1090/S0025-5718-1973-0366029-9
- James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820. MR 282540, DOI 10.1090/S0025-5718-1970-0282540-0
- R. B. Kellogg, Higher order singularities for interface problems, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 589–602. MR 0433926, DOI 10.1007/bf01932971 R. B. KELLOGG, Interpolation Between Subspaces of a Hilbert Space, Technical Note BN-719, Institute for Fluid Dynamics and Appl. Math., University of Maryland, College Park, Md., 1972.
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243
- J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1971), 9–15 (German). MR 341903, DOI 10.1007/BF02995904
- J. Nitsche, On Dirichlet problems using subspaces with nearly zero boundary conditions, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 603–627. MR 0426456
- J. Nitsche, Umkehrsätze für Spline-Approximationen, Compositio Math. 21 (1969), 400–416 (German, with English summary). MR 259436
- J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math. 11 (1968), 346–348 (German). MR 233502, DOI 10.1007/BF02166687
- Joachim A. Nitsche, Interior error estimates of projection methods, Proceedings of Equadiff III (Third Czechoslovak Conf. Differential Equations and their Applications, Brno, 1972) Folia Fac. Sci. Natur. Univ. Purkynianae Brunensis, Ser. Monograph., Tomus 1, Purkyně Univ., Brno, 1973, pp. 235–239. MR 0359361
- J. Nitsche and A. Schatz, On local approximation properties of $L_{2}$-projection on spline-subspaces, Applicable Anal. 2 (1972), 161–168. MR 397268, DOI 10.1080/00036817208839035 L. SERBIN, A Computational Investigation of Least Squares and Other Projection Methods for the Approximate Solution of Boundary Value Problems, Doctoral Thesis, Cornell University, Ithaca, N. Y., 1971.
- I. J. Schoenberg (ed.), Approximations with special emphasis on spline functions, Academic Press, New York-London, 1969. Publication No. 23 of the Mathematics Research Center, United States Army, The University of Wisconsin. MR 0251408
- Vidar Thomée and Bertil Westergren, Elliptic difference equations and interior regularity, Numer. Math. 11 (1968), 196–210. MR 224303, DOI 10.1007/BF02161842
- Vidar Thomée, Discrete interior Schauder estimates for elliptic difference operators, SIAM J. Numer. Anal. 5 (1968), 626–645. MR 238505, DOI 10.1137/0705050
- Miloš Zlámal, A finite element procedure of the second order of accuracy, Numer. Math. 14 (1969/70), 394–402. MR 256577, DOI 10.1007/BF02165594
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp. 28 (1974), 937-958
- MSC: Primary 65N30; Secondary 35JXX
- DOI: https://doi.org/10.1090/S0025-5718-1974-0373325-9
- MathSciNet review: 0373325