An observation concerning Ritz-Galerkin methods with indefinite bilinear forms
HTML articles powered by AMS MathViewer
- by Alfred H. Schatz PDF
- Math. Comp. 28 (1974), 959-962 Request permission
Abstract:
Existence, uniqueness and error estimates for Ritz-Galerkin methods are discussed in the case where the associated bilinear form satisfies a Gårding type inequality, i.e., it is indefinite in a certain way. An application to the finite element method is given.References
- Ivo Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/71), 322–333. MR 288971, DOI 10.1007/BF02165003
- A. K. Aziz (ed.), The mathematical foundations of the finite element method with applications to partial differential equations, Academic Press, New York-London, 1972. MR 0347104
- James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820. MR 282540, DOI 10.1090/S0025-5718-1970-0282540-0
- J. Nitsche, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal. 36 (1970), 348–355 (German). MR 255043, DOI 10.1007/BF00282271
- Miloš Zlámal, A finite element procedure of the second order of accuracy, Numer. Math. 14 (1969/70), 394–402. MR 256577, DOI 10.1007/BF02165594
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp. 28 (1974), 959-962
- MSC: Primary 65N30; Secondary 35JXX
- DOI: https://doi.org/10.1090/S0025-5718-1974-0373326-0
- MathSciNet review: 0373326