On the distribution of pseudo-random numbers generated by the linear congruential method. II
HTML articles powered by AMS MathViewer
- by Harald Niederreiter PDF
- Math. Comp. 28 (1974), 1117-1132 Request permission
Abstract:
The discrepancy of a sequence of pseudo-random numbers generated by the linear congruential method is estimated for parts of the period which are somewhat larger than the square root of the modulus. Applications to numerical integration are mentioned.References
- N. M. Korobov, Trigonometric sums with exponential functions, and the distribution of the digits in periodic fractions, Mat. Zametki 8 (1970), 641–652 (Russian). MR 280445
- N. M. Korobov, The distribution of digits in periodic fractions, Mat. Sb. (N.S.) 89(131) (1972), 654–670, 672 (Russian). MR 0424660
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- L. J. Mordell, On the exponential sum $\sum _{x=1}^{X}$ $\textrm {exp}\ (2\pi i(ax+bg^{x})/p)$, Mathematika 19 (1972), 84–87. MR 318073, DOI 10.1112/S0025579300004976
- L. J. Mordell, A new type of exponential series, Quart. J. Math. Oxford Ser. (2) 23 (1972), 373–374. MR 319912, DOI 10.1093/qmath/23.4.373
- H. Niederreiter, Methods for estimating discrepancy, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 203–236. MR 0354593
- Harald Niederreiter, On the distribution of pseudo-random numbers generated by the linear congruential method, Math. Comp. 26 (1972), 793–795. MR 326979, DOI 10.1090/S0025-5718-1972-0326979-5
- H. Niederreiter, Discrepancy and convex programming, Ann. Mat. Pura Appl. (4) 93 (1972), 89–97. MR 389828, DOI 10.1007/BF02412017
- H. Niederreiter, Application of Diophantine approximations to numerical integration, Diophantine approximation and its applications (Proc. Conf., Washington, D.C., 1972) Academic Press, New York, 1973, pp. 129–199. MR 0357357
- H. Niederreiter and Walter Philipp, Berry-Esseen bounds and a theorem of Erdős and Turán on uniform distribution $\textrm {mod}\ 1$, Duke Math. J. 40 (1973), 633–649. MR 337873
- R. G. Stoneham, On the uniform $\varepsilon$-distribution of residues within the periods of rational fractions with applications to normal numbers, Acta Arith. 22 (1973), 371–389. MR 318091, DOI 10.4064/aa-22-4-371-389
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp. 28 (1974), 1117-1132
- MSC: Primary 10K05; Secondary 65C10
- DOI: https://doi.org/10.1090/S0025-5718-1974-0457391-8
- MathSciNet review: 0457391