On complex quadratic fields wth class-number two
HTML articles powered by AMS MathViewer
- by H. M. Stark PDF
- Math. Comp. 29 (1975), 289-302 Request permission
Abstract:
Let $d < 0$ be the discriminant of a complex quadratic field of class-number $h(d)$. In a previous paper the author has effectively shown how to find all d with $h(d) = 2$. In this paper, it is proved that, if $h(d) = 2$, then $|d|\; \leqslant 427$.References
- D. H. Lehmer, Emma Lehmer, and Daniel Shanks, Integer sequences having prescribed quadratic character, Math. Comp. 24 (1970), 433–451. MR 271006, DOI 10.1090/S0025-5718-1970-0271006-X
- H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1973/74), 529–542. MR 357373, DOI 10.4064/aa-24-5-529-542
- H. M. Stark, A transcendence theorem for class-number problems. II, Ann. of Math. (2) 96 (1972), 174–209. MR 309878, DOI 10.2307/1970897
- Harold Stark, On complex quadratic fields with class number equal to one, Trans. Amer. Math. Soc. 122 (1966), 112–119. MR 195845, DOI 10.1090/S0002-9947-1966-0195845-4
Additional Information
- © Copyright 1975 American Mathematical Society
- Journal: Math. Comp. 29 (1975), 289-302
- MSC: Primary 12A25; Secondary 12A50
- DOI: https://doi.org/10.1090/S0025-5718-1975-0369313-X
- MathSciNet review: 0369313