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Approximation Methods

for Nonlinear Problems with Application

to Two-Point Boundary Value Problems

By H. B. Keller*

Abstract.   General nonlinear problems in the abstract form F(x) = 0 and corresponding

families of approximating problems in the form Ff¡(xn) = 0 are considered (in an appro-

priate Banach space setting).   The relation between "isolation" and "stability" of solu-

tions is briefly studied.   The main result shows, essentially, that, if the nonlinear problem

has an isolated solution and the approximating family has stable Lipschitz continuous

linearizations, then the approximating problem has a stable solution which is close to

the exact solution.   Error estimates are obtained and Newton's method is shown to

converge quadratic-ally.   These results are then used to justify a broad class of difference

schemes (resembling linear multistep methods) for general nonlinear two-point boundary

value problems.

1.   Introduction.  We present a general abstract study of methods for approximat-

ing the solution of nonlinear problems formulated in a Banach space setting.  Our basic

results are of the following kind:  // the nonlinear problem has a solution, and a con-

sistent approximating problem has a stable Lipschitz continuous linearization (i.e.,

Fréchet derivative), then the approximating problem has a stable solution which is close

to the exact solution.   Estimates of the error are given in terms of the order of con-

sistency, and Newton's method is shown to converge quadratically for computing the

approximate solution.   Asymptotic error expansions can also be derived under appropri-

ate assumptions.  We illustrate the theory by studying difference methods for approxi-

mating the isolated solutions of nonlinear two-point boundary value problems.  Of

course, all of these results are local in that they are confined to some sphere about the

exact solution.  The phenomenon of nonlinear instability does not occur here since, as

has been shown by Stetter [10], this requires departing from the sphere.  Indeed, parts

of our theory are closely related to that of Stetter whose interest, however, was con-

fined to the question of nonlinear instabilities; he therefore assumed the existence of

solutions of the approximating problems.   Similar existence results have been

obtained by Pereyra [13] but his proofs are not constructive.
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For general nonlinear problems, the isolated nature of the solution replaces or is

equivalent to the well posedness required of Cauchy problems in the Lax theory [7].

In particular, we show in Section 2 that "stability" and "isolation" are essentially

equivalent.  In Section 3, the family of approximating problems are introduced, and the

main theorem is proven.  This shows that a stable family of approximate solutions

exists, that they can be obtained by Newton's method, and error estimates are given.

Asymptotic error expansions are not discussed in Section 3 as they are easily obtained

from our results by employing the techniques indicated in [3] or [9].

The present basic theory was initially developed and applied to study a specific

difference method for nonlinear two-point boundary value problems [3].  However,

the general simplicity and applicability of the theory to a variety of approximation

problems prompted the more general treatment.  In addition to the above cited use,

the theory has already been applied by R. K. Weiss in [11] to study implicit Runge-

Kutta and collocation schemes for nonlinear two-point boundary value problems.  It

can also be used for nonlinear Fredholm problems, for mildly nonlinear elliptic problems,

and to justify the Box scheme applied to nonlinear parabolic problems, etc.  Such

applications will be presented elsewhere.  However, we do show, in Section 4, how

the theory can be applied to justify very general difference schemes for approximating

isolated solutions of very general nonlinear two-point boundary value problems.  A

crucial step in this demonstration is supplied by a powerful stability result in [4] for

linear problems.  Indeed, we essentially show that any difference scheme which is stable

and consistent for the initial-value problem is so for isolated solutions of the boundary

value problem.  Our theory is also used in [4] to study the most general difference

methods for nonlinear boundary value problems in ordinary differential equations.

2.  Stable and Isolated Solutions.   For a mapping **F:   Bl —► B2, where the

B„ are appropriate Banach spaces, we consider the problem

(2.1) Fix) = 0.

With the sphere 50(«) = {x:  x G B15 IIjc - m|| < p}, we introduce the

(2.2) Definitions,   (a)  The mapping F(-) is stable on Spiu) iff there exists a

constant K   > 0 such that***

\\v-w\\<Kp\\Fiv)-Fiw)\\

for all v, w G 5p(«).

(b) A solution x = u of (2.1) is stable iff F(-) is stable on Spiu) for some p > 0.

Trivially, we note that a stable solution is also unique in 5p(w).  If F(-) is linear

and stable, then our definition implies (for any p > 0) Lipschitz continuous dependence

**To simplify matters, we assume that the domain of F is Bp the restriction to a proper

subset offers no difficulty.

***We do not distinguish notationally between norms on 8j and 62-   Rather, we adopt the

convention that IUII = IWIg    if x e B„.
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of the solution of F{x) = g on the inhomogeneous data g (which is the usual definition

for linear problems).

The Fre'chet derivative of F at x will be denoted by Lix).  This is a linear operator

Lix):   Bj —*■ B2 which is such that

(2.3) ,fcfl,'*+y>-ff<> + g»H^O   »W-0.
In terms of the Fre'chet derivative, we introduce the

(2.4) Definition.  A solution u o/(2.1) is isolated iff Liu) exists and is nonsingu-

lar; that is:  if Liu)y = 0, then y = 0.

Now we show that stability implies isolation as in

(2.5) Theorem.  Let u be a stable solution of (2.1).  Then, if Liu) exists, u is

an isolated solution.

Proof.   Suppose ¿(w)v = 0 and ||y|| =£ 0.  Then, for all positive scalars a <

p/WyW, it follows that u(a) = u + ay G Spiu).  By the stability of F(-) on Sp(«), it

follows that

\\u-vicc)\\<Kp\\Fiu)-Fiv)\\

< Kp {\\Liu)ay\\ + WayWrtu, ay)}.

Thus, a||.y|| < Kpr(u, ay)a||y|| and, if a > 0 is chosen so small that Kpr(u, ay) < 1, we

must have ||y|| = 0.

Stability is such a strong condition that it implies Lix) nonsingular wherever it

exists in the interior of S (u).  The proof is identical to that of Theorem (2.5) since

the latter does not employ Fi)i) = 0.  Thus, it is not surprising that a form of converse

to Theorem (2.5) requires the existence of Lix) in some sphere about u.   Indeed, we

require even more in stating

(2.6) Theorem. Let Liii) be nonsingular for some w £ B, • Let Lix) exist and

be Lipschitz continuous on SPQiu) for some p0 > 0; that is: for some constant KL >

0, ||Z,(x) - L(y)\\ < KL\\x -y\\ for all x, y G SPQiu). Then, F(-) is stable on Spiu) for

any p < iKL\\L~iiu)\\yi, and the stability constant is

Kp = \\L-1iu)\\il-pKL\\L-1iu)\\)-i.

Proof.   For any x, y G Spiu) with p < p0, we have Fix) - F(y) = Lix, y\x -y),

where

Lix,y)=foLitx+ [l-t]y)dt.

Write Lix, y) = Liu) + [Lix, y) - Liu)] and note that

||Z(x, y) - Liu)\\ < fjLitx + [1 - t]y) - L(tu + [1 - r] u)||
J 0

< KL J1 Wtix - u) + [1 - t] iy - u)|| dt < pKL.
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Thus, if p is so small that pKL\\L~l(u)\\ < 1, the Banach lemma implies that ¿(x, y) is

nonsingular and

UL-'ix, y)\\ < IU-—10*)||/C1 - pKL\\L-liu)\\).

Now stability follows from (x -y) = L~1ix, y)[Fix) - F(y)] with the indicated K . D

The hypothesis in Theorem (2.6) can be weakened to require only local Holder

continuity in the restricted form, with some 0 < a < 1 :

||£(x) - L(k)|| < K, \\x - «IIa     for all * G Sa («).

In this case, p must be restricted by pa < (A"x||L_1(m)||)_1, and the stability constant

must be suitably altered.

Finally, we note that if u is an isolated solution of (2.1), then ¿(w) is nonsingular.

So if, in addition, Lix) exists and is Lipschitz continuous in some SPQiu), then u is a

stable solution, by Theorem (2.6).  This is the essential converse of Theorem (2.5).

3.  Approximation Problems.  On a family of Banach spaces, {B*, B2}, we con-

sider the family of approximating problems, for 0 < h < hQ:

(3.1) Fnixh) = 0,

where Fh:   B\ —* B2- To relate problems (2.1) and (3.1), we require that there exist

a family of linear mappings {P^, P2} where^

(3.2) (a)  P^B^B?,   (b)Um||P>|| = W   V* G Bv.

We find it convenient to use the notation

?hvx=[x]h,      v=\,2,

where, of course, [x]n G ß£ if x G Bv. The Fre'chet derivative of Fn at xh is denoted

by Lhixh) and Spixh) is the sphere in B'\ of radius p about xh. We introduce several

concepts.

(3.2) Definition.   The family {Fni-)} is stable for u G B, iff for some hQ > 0,

p > 0 and some constant Mp, independent of h.

\\xh-yh\\<Mp\\Fhixh)-Fhiyh)\\

for all xh,yhG Spi[u]h) and all h G (0, h0].

(3.3) Definition.   The family {Fni-)} is consistent of order p with F(-) on Spiu)

if and only if

II^ÍExU - [F(x)]h\\ = \\rh(x)\\ <Mix)hp,

for all x G SAu) and some bounded functional Mix) > 0 independent of h.

Again norms are those of the relevant spaces; 11x^11 = llxftllgh if xh e 8
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The significance of these definitions is well known and, indeed, best summarized

in the

(3.4) Theorem.   Let F(«) = 0 ant? Fhivh) = 0 for some vh G Sp([u] „), p > 0

and all h G (0, h0]. Let {Fhi')} be stable for u and consistent of order p on S0iu).

Then

\\[u]h-vn\\<MpMiu)hp.

Proof.   By (3.2) with xh = [u]h and yn = vh,

\\[u]h-vn\\<Mp\\Fhi[u\h)-Fhivh)\\.

Using Fhivh) = 0 and [Fiu)]h = 0 in the above and recalling (3.3) with p = 0 yields

the result .D

We are thus faced with the basic problems:   (i) to be insured that the approxi-

mating problems actually have solutions in some sphere about [u]h; (ii)  to be able to

verify stability; and (iii)  to determine the order of consistency.  For many explicit

difference schemes, it is trivial to verify (i), but, for implicit schemes and projection

methods, this is frequently quite difficult.  Again, for most difference approximation

schemes, the order of consistency is determined by simple Taylor expansions.  However,

for projection or expansion methods, this is by no means a trivial task.  The stability

verification for nonlinear problems of great generality is also not a standard procedure.

It is usually reduced to a study of the linearized problems.  We present such a result as

(3.5) Lemma. Let the family of mappings {/*"„(•)} have Fréchet derivatives

ii.e., linearizations) {Lhixh)} on some family of spheres Sp Azh) and satisfy for all

*S(0,Ao]:
(a) {Lhizh)} have uniformly bounded inverses at the centers of the spheres; that

is, for some constant K0 > 0, ||Z,^1(zft)|| < K0.

(b) {Lhixh)} are uniformly Lipschitz continuous on Sp Azh); that is, for some

constant KL > 0,

\\Lhixh)-Lhiyh)\\<KL\\xh -yn\\

forallxh,yh GSPo{zh}.

If zn = [u] h for some u G B,, then the family {Fni')} is stable for u.

Proof.   The proof is essentially identical to that of Theorem 2.6.D

To insure the existence of a family of solutions {vn} approximating a solution u

of (2.1), we need only adjoin consistency to the above.  More precisely, we have

(3.6) Theorem.  Let x = u be a solution of Fix) - 0. Let the family {Fhi%)}

be consistent of order p with F(-) on S0iu). Let the hypothesis (a) and (b) of Lemma

(3.5) hold with zh — [u]n.  Then, for p0 and h0 sufficiently small and for each h G

(0, h0], the problem Fhixh) = 0 has a unique solution xh = vn G SPoi[u]h).  These

solutions satisfy

\\[u]h-vh\\<MpMiu)hp.
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Proof.  We define the family of mappings {Ghixh)} by

c*C«*)s*»-^1(M*V!,»C«t»)

and shall show that they are uniformly contracting on Sp A[u]n), provided p0 and hQ

are sufficiently small.  Since the sphere is convex, we have, for any xh,yn G SpQi[«]„):

Gh(Xh)-Ghiyh) = L-\[u}h) {Lh([u]hXxh -yh) - (F(x,) - F(y„))}

= Lh1(W]h)iLh([uAh)-î<h(xh<yh)Hxh -y*)-

Here, as in Theorem (2.6), we used the generalized mean value theorem and

hixh,yh) = f0L„(txh + [l-t]yh)dt.

From (3.5b), it follows that

\\Lh([u}h)-Lh(Xf,,yh)\\<KL(.0,

and thus, by (3.5a),

WGh(xh) - Ghiyh)\\ < a||x„ -yh\\,      a = tf0tf.Po.

At the center of the sphere, xh = [u]h, we have, by consistency (3.3) and since

F(«) = 0:

\\[u]h-Gni[u]h)\\ < K0\\Fhi[u]h) - [Fiu)]h\\ <K0Miu)hp.

Now if a < 1 and KQMiu)hp < (1 - a)p0, the Contraction Mapping Theorem applied

to xh = Gixh) implies the existence of a unique solution in SPoi[u]h).

The error estimate follows from Theorem (3.4), which is now applicable!]

Obviously, the iteration scheme implied in the proof of Theorem (3.6) cannot be

used to compute the approximate solutions since [u]h is not known.  However,

Newton's method is frequently applicable for this purpose as we show in

(3.7)   Theorem.   Let the hypothesis of Theorem (3.6) hold.   Then, for any

h G i0, h0], if p0, h0 and p. < p0 are sufficiently small, the Newton iterates {vhv^}

defined by:

(a) vn^GSpA[u\h),

(b) Lft(u<">) [u("+1> - #>] = -/><">), v = 0, 1, 2, . . . ,

converge quadratically to the unique solution of Fhixh) = 0 in SP(ji[u]h).

Proof.   By writing

Lnixh)=Lni[u)h) + [Lhixh)-Lhi[u]h)]

= Lni[u]h) {I + L~li[u]h) [Lhixh) - Lhi[uh])\ }

and using (3.5a, b) with KQK PQ < 1, the Banach lemma yields that Lhixh) is non-

singular and, in fact,
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(a) \\L-hlixh)\\ < KJH - K0KlP0) = Kpo    for ail xh G Spoi[u]h).

For any vn°~* G Sp A[u]h), we have from (3.7b) with v = 0, as in the proof of

Theorem (3.6):

tf> - «j?» = -L-h\v^)Fhi[u]h) + L-h\v^)Lh(vi°\ [«]„)([«]* - <#»).

However, the identity

L-hiivn°>)Lhivn0), [«]„)=/ + iro40))(£Ä(^0). [»]ft) -¿*(40)))

implies by (a) above and (3.5b) that for some constant C> 0:

lüftVWftO^. l«]»)IKC

Now, consistency in (3.3), recalling [F(«)]„ = 0, and the above yield

(b) ||üft1>-4°)||<ifpo3f(«)ri'' + Cpi.

Together with (3.5b), conditions (a) and (b) above are sufficient for the quadratic con-

vergence of Newton's method, provided h0 and p. axe sufficiently small (see for

instance [2] or [6]).D

The basic difficulty in applying the above theory is to verify (3.5a); that is, the

establishment of the stability of the family of linear operators {Lhi[u]h)}.  Frequently,

this can be done by showing that there are some close approximations to Lhi[u\h),

say Ln([u]h), which have uniformly bounded inverses.  That is, if

\\Lhi[u]h)-Lhi[u]h)\\ = Oih)

and || L^Ht"]/,)!! < K   f°r all A < h0, then, by the Banach lemma, (3.5a) holds with

some modified constant, Kq.  This technique is illustrated for two-point boundary

value problems in Section 4; but, of course, the problem is just modified to show the

stability of Lni[u]h).  If the problem Fix) = 0 has an isolated solution x = u, then we

know that Liu) has a bounded inverse.  In Section 4, this fact and some additional

assumptions on related (initial-value) problems are used to show that the consistent

approximation Lhi[u]h) is stable.  In another important class of problems, Liu) is

selfadjoint and, say positive definite.  Then if the same is true, uniformly in h, of

L/,([w],¡), the stability may easily follow.  This technique is very close to that used by

R. B. Simpson in [8].  Finally, the technique devised by H.-O. Kreiss is perhaps most

powerful; see, for example, [5]. Here, since ¿(«) does not have the eigenvalue zero,

Kreiss shows that {Lni[u]h)} must have eigenvalues bounded away from zero.  This

assumes the consistency of Ln([u]n) with Liu) and employs a contradiction obtained

by using an appropriate map from Bn to B of the normalized solutions of Lh([u]h)<j>h

= 0 which can be shown to converge to <p, a nontrivial solution of Z,(w)0 = 0.

4.  Nonlinear Two-Point Boundary Value Problems.  We assume the nonlinear two-

point boundary value problem
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(a) Nyit) = y'it) - f(i, y(f)) = 0,      a < t < b,

(4.1)
(b) g(y(f7), yib)) = 0,

has an isolated solution, y(f).  That is, the linear problem

(a) L [y] 0(0 =■ 0'(r) - A (00(0 = 0,      a < t < b,

(b) B[y]<l> = Ba<t>{a) + Bb<i>ib) = 0,
(4.2)

where

,.~ ,,  ,,rt _ W, yfr))    „ _ 3g(y(a), y(¿)) ,
(4.2) (c) X(0 =      ay      ;   ¿*z = —g^j-,   r = a, b;

has only the trivial solution, 0(0 = 0.  We shall apply the previous theory to justify

some fairly general difference schemes for approximating this solution of (4.1).

A family of nets is considered of which the general one is

(a) t0 = a:   r, = t,_. + h,,       !</</;    tj = b,

(4.3)
(b) h = max h¡ < X min h„

i     ' i     '

where X is a fixed constant and on which h —> 0 in some manner.  For each such net,

a difference scheme, determined by the coefficients (afc(A), ß,kih)}, is defined by:

(a) Nhy¡ =- Z  ty*v* - 0/*f('*> vfc)} = 0.      !</</;
(4.4) k=0

(b) g(v0, vj) = 0.

(4.5) Our main assumption on the numerical method is that: The family of

schemes (4.4a), with v0 = u0, is consistent of order p and stable for all sufficiently

smooth initial-value problems of the form:

(4.6) u' = F(i, u),      a<t<b;   u(a) = u0.

For example, to satisfy (4.5), the scheme (4.4a) could be a one-step scheme such

as Euler's method, centered Euler or the trapezoidal rule.  It could equally well be some

standard multistep scheme on a uniform net including a prescribed starting scheme on

a refined net (to maintain uniform accuracy).  Our present formulation does not include

Runge-Kutta or implicit Runge-Kutta schemes, but this is essentially a notational sim-

plification as we shall show later.

To apply the theory of Section 3, we introduce the family of Banach spaces B^

= B2= E"iJ+1) and, say, B1 = Cp + 1 [a, b], B2 = Cp [a, b]. Then we require that

fit, z) G C [[a, b]  x E"] and Fix) = 0 represents the boundary value problem (4.1a, b)

with x = y(0-  For xh = {v;}¿, the family of problems F„(x„) = 0 represents the

family of difference equations (4.4a, b).  The mapping [ ] h on B„ into B£ is defined

by [y]„ = {y(r,)}¿.
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We now easily get the basic

(4.7)   Theorem.  Let (4.1) have an isolated solution y(0 S Cp+. [a, b]. Let

fit, z) G Cpi[a, b] x E") and g(z, w) G C1§ Lip(E" x E"). If the scheme (4.3)-(4.4)

satisfies (4.5), then for some p0 > 0, h0 > 0 sufficiently small and all h < hQ:

(i)  The difference equations (4.4) have a unique solution {vZJ0 in ||v- - y(r)|| <

Po-
(ii)  Hvy - y(r;)|| < Mzp, 0 < ; < J.

(iii)  The difference solution can be computed by Newton's method which con-

verges quadratically for any initial iterate {vf}J0 in ||v° - y(i;.)|| < p¡, provided p1 < p0

is sufficiently small.

Proof.   For (i) and (ii), we need only verify the hypothesis of Theorem (3.6).

Clearly, by (4.5), the scheme (4.4) is consistent of order p with (4.1).   It remains to

verify (a) and (b) of Lemma (3.5) with zh = [y]„.  The linearized difference operators

obtained from the nonlinear difference operators in (4.4) are, say, applied to <j>h =

(a)

(4.8)

£ftO>ftfy=i: [v-^fy-^*)]^  i</<*

(b) Bhivh)4>h = ^-(v0, y,)0o + ^j-(v0, v,)*,.

Now let us apply the difference scheme of (4.4) to the linear problem (4.2).  This yields

(a) ¿ [ V - M*'*)] ̂  = °'       1<1<*
(4.9) *=o

(b) 5a0o + Bb<t>j = 0.

Recalling (4.2), it follows from (4.8) that (4.9) is just

(4.10) (a) Lh(\y]hyt>. = Q,      l</</;   (b) Bhi[y]h^>h = 0.

However, Corollary (3.13) of [4] states essentially that:   i/(4.2) has a unique

solution, then the Qinear) difference scheme (4.10) is stable and consistent for (4.2) if

and only if (4.10a) with 0O = c is stable and consistent with (4.2a) and 0(a) = c.  But

the latter part follows from the assumption (4.5).  Thus, since y(0 is isolated, and

hence (4.2) has a unique solution, the scheme in (4.10) is stable.  Hence, (a) of Lemma

(3.5) is established.  (We point out that the operator corresponding to Lhi[y]h) of

(3.5) is just that represented by the coefficient matrix of the difference equations in

(4.10a, b).  Stability of this scheme is shown in [4] to be equivalent to the uniform

boundedness of the inverses of these coefficient matrices for all h < h0.)

From the Lipschitz continuity of the first derivatives of f(i, /) and g(y(a), yf^)),

it follows, using (4.6b), that (b) of Lemma (3.5) with zh = [y]h holds for the scheme
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in (4.10).  Thus, (i) and (ii) of our theorem are established by an application of

Theorem (3.6).

To establish (iii), we need only apply Theorem (3.7).D

We now show how to extend the above result to more general difference schemes,

say including all Runge-Kutta and implicit Runge-Kutta types. Thus, in place of (4.4),

we consider:

¡(tjk> ¿ W/)> =0,(a) AV/ = Z | <*/*v* - MÍO*« £ W< )\ = o.    i </ </;
(4.11) *=o (

(b) g(v0, Vj) = 0.

We again impose (4.5), now with (4.4a) replaced by (4.11a).  The consistency require-

ment in (4.5) implies that for all sufficiently smooth functions u(0:

(4.12)

j

<tjk) - Z >/*/»('/)
1=0

<Ciu)h,      Kj<J,0<k<J.

Note that this is also a restriction on the choice of the points t k.

The linearized difference equations obtained from (4.11) are:

(4.13) fc=o I 5=0     ay \     i=o        I      )

(b) Bhivhyph = 0.

However, when applied to the linear problem (4.2), our more general difference scheme

(4.11a) yields

(a) MM*)*/ = ¿ |v- ¿ VjAitjsYïjsXh = o,
(4.14) fc=0( î=0 )

(b)                              Bhi[y]hyt>h = 0.

Since y(0 is isolated and (4.11a) is stable and consistent for initial-value problems, it

follows, by the above cited Corollary (3.13) of [4], that the linear difference scheme

in (4.14) is stable. Now use (4.12) to observe that l|Lft([y]„) - Lh([y]n)\\ = 0(h),

provided 9f/9y and y(0 are sufficiently smooth.   From the Banach lemma, it easily

follows that the linear difference scheme in (4.13) is also stable.  Thus, with no diffi-

culty, we see that Theorem (4.7) goes over for difference schemes of the form (4.11).

The analog of Theorem (4.7) for implicit Runge-Kutta schemes has previously

been demonstrated in [11] by R. K. Weiss.  In place of Lhi[y]h) given by (4.14a),

Weiss employs the centered Euler (Box scheme) whose stability was demonstrated in

[1].   It is a bit more involved to show the "consistency" of the Box scheme with

UiyU).
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The analog of Theorem (4.7) for "gap-schemes" has been illustrated in [12] by

A. B. White.  These are high-order accurate two-point difference schemes in which the

local truncation error has leading term 0(h2m), and the higher-order terms proceed in

higher powers of h2.  The lowest-order part of these gap-difference schemes is just that

obtained from the trapezoidal rule, and the corrections are bounded perturbations of

order h2.  Thus, the stability proof could easily be obtained as above by showing con-

sistency with the (stable) trapezoidal scheme.

Applied Mathematics

California Institute of Technology

Pasadena, California 91109

1. H. B. KELLER, "Accurate difference methods for linear ordinary differential systems

subject to linear constraints," SIAM J. Numer. Anal., v. 6, 1969, pp. 8-30.     MR 40 #6776.

2. H. B. KELLER, "Newton's method under mild differentiability conditions," J. Comput.

System Sei., v. 4, 1970, pp. 15-28.     MR 40 #3710.

3. H. B. KELLER, "Accurate difference methods for nonlinear two point boundary value

problems," SIAM J. Numer. Anal., v. 11, 1974, pp. 305-320.

4. H. B. KELLER & A. B. WHITE, "Difference methods for boundary value problems in

ordinary differential equations," SIAM J. Numer. Anal., v. 12, 1975.   (To appear.)

5. H.-O. KREISS, "Difference approximations for boundary and eigenvalue problems for

ordinary differential equations," Math. Comp., v. 26, 1972, pp. 605—624.

6. J. M. ORTEGA & W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in

Several Variables, Academic Press, New York, 1970.     MR 42 #8686.

7. R. D. RICHTMYER, Difference Methods for Initial-Value Problems, Interscience Tracts

in Pure and Appl. Math., no. 4, Interscience, New York, 1957.     MR 20 #438.

8. R. B. SIMPSON, "Existence and error estimates for solutions of a discrete analog of

nonlinear eigenvalue problems," Math. Comp., v. 26, 1972, pp. 359—375.     MR 47 #4466.

9. H. I. STETTER, "Asymptotic expansions for the error of discretization algorithms for

non-linear functional equations," Numer. Math., v. 7, 1965, pp. 18—31.     MR 30 #5505.

10. H. J. STETTER, "Stability of nonlinear discretization algorithms," Numerical Solution

of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965), Academic Press, New York,

1966, pp. 111-123.     MR 34 #5322.

11. R. K. WEISS, "The application of implicit Runge-Kutta and collocation methods to

boundary value problems," Math. Comp., v. 28, 1974, pp. 449-464.

12. A. B. WHITE, Numerical Solution of Two Point Boundary Value Problems, Ph. D. Thesis,

Calif. Inst. of Technology, Pasadena, 1974.

13. V. PEREYRA, "Iterated deferred corrections for nonlinear operator equations,"

Numer. Math., v. 10, 1967, pp. 316-323.


