Finite element multistep discretizations of parabolic boundary value problems
HTML articles powered by AMS MathViewer
- by Miloš Zlámal PDF
- Math. Comp. 29 (1975), 350-359 Request permission
Abstract:
The initial-boundary value problem for a linear parabolic equation in an infinite cylinder under the Dirichlet boundary condition is solved by applying the finite element discretization in the space dimension and ${A_0}$-stable multistep discretizations in time. No restriction on the ratio of the time and space increments is imposed. The methods are analyzed and bounds for the discretization error in the ${L_2}$-norm are given.References
- James H. Bramble and Vidar Thomée, Discrete time Galerkin methods for a parabolic boundary value problem, Ann. Mat. Pura Appl. (4) 101 (1974), 115–152. MR 388805, DOI 10.1007/BF02417101
- P. G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods, Comput. Methods Appl. Mech. Engrg. 1 (1972), 217–249. MR 375801, DOI 10.1016/0045-7825(72)90006-0
- Colin W. Cryer, A new class of highly-stable methods: $A_{0}$-stable methods, Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 153–159. MR 323111, DOI 10.1007/bf01933487
- Colin W. Cryer, On the instability of high order backward-difference multistep methods, Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972), 17–25. MR 311112, DOI 10.1007/bf01932670
- Peter Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, Inc., New York-London, 1962. MR 0135729 O. A. LADYŽENSKAJA, V. A. SOLONNIKOV & N. N. URAL’CEVA, Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R. I., 1968. MR 39 #3159b.
- J. D. Lambert, Computational methods in ordinary differential equations, John Wiley & Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists and Engineers. MR 0423815
- O. C. Zienkiewicz, The finite element method in engineering science, McGraw-Hill, London-New York-Düsseldorf, 1971. The second, expanded and revised, edition of The finite element method in structural and continuum mechanics. MR 0315970
- Miloš Zlámal, Finite element methods for parabolic equations, Math. Comp. 28 (1974), 393–404. MR 388813, DOI 10.1090/S0025-5718-1974-0388813-9
- Miloš Zlámal, Curved elements in the finite element method. I, SIAM J. Numer. Anal. 10 (1973), 229–240. MR 395263, DOI 10.1137/0710022
- Miloš Zlámal, Curved elements in the finite element method. II, SIAM J. Numer. Anal. 11 (1974), 347–362. MR 343660, DOI 10.1137/0711031
Additional Information
- © Copyright 1975 American Mathematical Society
- Journal: Math. Comp. 29 (1975), 350-359
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1975-0371105-2
- MathSciNet review: 0371105