Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Tables of reductions of symmetrized inner products (“inner plethysms”) of ordinary irreducible representations of symmetric groups

Author: N. Esper
Journal: Math. Comp. 29 (1975), 1150-1151
MSC: Primary 20C30
MathSciNet review: 0387398
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Decompositions of symmetrized inner products $[\alpha ] \boxdot [\beta ]$ of ordinary irreducible representations $[\alpha ]$ of symmetric groups ${S_n}$ and $[\beta ]$ of ${S_m}$ were evaluated on a CDC 6400. Tables were obtained for $2 \leqslant n \leqslant 10$ and $2 \leqslant m \leqslant 5$ as well as for $m = 6$ and $2 \leqslant n \leqslant 7$.

References [Enhancements On Off] (What's this?)

    N. ESPER, Ein interaktives Programmsystem zur Erzeugung der rationalisierten Charakterentafel einer endlichen Gruppe, Staatsexamensarbeit, Aachen, 1974. (To appear.) A. KERBER, "Symmetrization of representations," Proc. Second Internat. Colloq. Group Theoretical Methods in Physics, Nijmegen, June 1973.
  • R. C. King, Branching rules for ${\rm GL}(N)\supset _{m}$ and the evaluation of inner plethysms, J. Mathematical Phys. 15 (1974), 258–267. MR 331999, DOI
  • G. Ja. LJUBARSKIĬ, Group Theory and Its Applications to Physics, GITTL, Moscow, 1957; English transl., Pergamon Press, New York, 1960. MR 21 #5441; 22 #7709.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 20C30

Retrieve articles in all journals with MSC: 20C30

Additional Information

Article copyright: © Copyright 1975 American Mathematical Society