Models of difference schemes for $u_{t}+u_{x}=0$ by partial differential equations
Author:
G. W. Hedstrom
Journal:
Math. Comp. 29 (1975), 969977
MSC:
Primary 65M15
DOI:
https://doi.org/10.1090/S00255718197503887974
MathSciNet review:
0388797
Fulltext PDF Free Access
Abstract  References  Similar Articles  Additional Information
Abstract: It is well known that difference schemes for hyperbolic equations display dispersion of waves. For a general dissipative difference scheme, we present a dispersive wave equation and show that the dispersions are essentially the same when the initial data is a step function.

R. D. RICHTMEYER & K. W. MORTON, Difference Methods for InitialValue Problems, 2nd ed., Wiley, New York, 1967. MR 36 #3515.
H. KREISS & J. OLIGER, Methods for the Approximate Solution of Time Dependent Problems, Global Atmospheric Research Programme, Publications Series, no. 10, Geneva, 1973.
C. W. HIRT, "Heuristic stability theory for finitedifference equations," J. Computational Phys., v. 2, 1968, pp. 339355.
 G. R. McGuire and J. Ll. Morris, A class of secondorder accurate methods for the solution of systems of conservation laws, J. Comput. Phys. 11 (1973), 531â€“549. MR 331808, DOI https://doi.org/10.1016/00219991%2873%29901368
 N. N. Janenko and Ju. I. Ĺ okin, The first differential approximation of difference schemes for hyperbolic systems of equations, Sibirsk. Mat. Ĺ˝. 10 (1969), 1173â€“1187 (Russian). MR 0255080
 Raymond C. Y. Chin, Dispersion and Gibbs phenomenon associated with difference approximations to initial boundaryvalue problems for hyperbolic equations, J. Comput. Phys. 18 (1975), no. 3, 233â€“247. MR 391530, DOI https://doi.org/10.1016/00219991%2875%29900017
 Alain Lerat and Roger Peyret, Sur lâ€™origine des oscillations apparaissant dans les profils de choc calculĂ©s par des mĂ©thodes aux diffĂ©rences, C. R. Acad. Sci. Paris SĂ©r. AB 276 (1973), A759â€“A762 (French). MR 314276
 Alain Lerat and Roger Peyret, Sur le choix de schĂ©mas aux diffĂ©rences du second ordre fournissant des profils de choc sans oscillation, C. R. Acad. Sci. Paris SĂ©r. AB 277 (1973), A363â€“A366 (French). MR 337150
 Philip Brenner and Vidar ThomĂ©e, Estimates near discontinuities for some difference schemes, Math. Scand. 28 (1971), 329â€“340 (1972). MR 305613, DOI https://doi.org/10.7146/math.scand.a11028
 G. W. Hedstrom, The rate of convergence of some difference schemes, SIAM J. Numer. Anal. 5 (1968), 363â€“406. MR 230489, DOI https://doi.org/10.1137/0705031
 S. I. Serdjukova, The oscillations that arise in numerical calculations of the discontinuous solutions of differential equations, Ĺ˝. VyÄŤisl. Mat i Mat. Fiz. 11 (1971), 411â€“424 (Russian). MR 284018
Retrieve articles in Mathematics of Computation with MSC: 65M15
Retrieve articles in all journals with MSC: 65M15
Additional Information
Keywords:
Hyperbolic equations,
discontinuities,
models of difference schemes
Article copyright:
© Copyright 1975
American Mathematical Society