A modified Galerkin procedure with Hermite cubics for hyperbolic problems
HTML articles powered by AMS MathViewer
- by Lars Wahlbin PDF
- Math. Comp. 29 (1975), 978-984 Request permission
Abstract:
The Galerkin method, modified to include a term of artificial viscosity type, is applied to model problems for linear and quasilinear hyperbolic systems. Asymptotic error estimates are derived.References
- J. E. Dendy, Two methods of Galerkin type achieving optimum $L^{2}$ rates of convergence for first order hyperbolics, SIAM J. Numer. Anal. 11 (1974), 637â653. MR 353695, DOI 10.1137/0711052
- Todd Dupont, Galerkin methods for first order hyperbolics: an example, SIAM J. Numer. Anal. 10 (1973), 890â899. MR 349046, DOI 10.1137/0710074
- Todd Dupont, Galerkin methods for modeling gas pipelines, Constructive and computational methods for differential and integral equations (Sympos., Indiana Univ., Bloomington, Ind., 1974) Lecture Notes in Math., Vol. 430, Springer, Berlin, 1974, pp. 112â130. MR 0502035
- Lars B. Wahlbin, A dissipative Galerkin method applied to some quasilinear hyperbolic equations, Rev. Française Automat. Informat. Recherche OpĂ©rationnelle SĂ©r. Rouge 8 (1974), no. R-2, 109â117 (English, with French summary). MR 368447
Additional Information
- © Copyright 1975 American Mathematical Society
- Journal: Math. Comp. 29 (1975), 978-984
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1975-0388809-8
- MathSciNet review: 0388809