Sums of distinct elements from a fixed set

Author:
Torleiv Kløve

Journal:
Math. Comp. **29** (1975), 1144-1149

MSC:
Primary 10A40; Secondary 10B35

DOI:
https://doi.org/10.1090/S0025-5718-1975-0398969-0

MathSciNet review:
0398969

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A sequence of natural numbers is complete if every large integer is a sum of distinct elements of the sequence. The greatest integer which is not such a sum is called the threshold of completeness. Richert developed a method to compute the threshold of completeness. We prove that Richert’s method applies to a large class of complete sequences. Further, we consider in some detail these concepts for the sequences of powers (with fixed exponents) and give numerical results.

- Robert E. Dressler,
*A stronger Bertrand’s postulate with an application to partitions*, Proc. Amer. Math. Soc.**33**(1972), 226–228. MR**292746**, DOI https://doi.org/10.1090/S0002-9939-1972-0292746-6 - Robert E. Dressler,
*Addendum to: “A stronger Bertrand’s postulate with an application to partitions”*, Proc. Amer. Math. Soc.**38**(1973), 667. MR**309842**, DOI https://doi.org/10.1090/S0002-9939-1973-0309842-8 - Robert E. Dressler,
*Sums of distinct primes*, Nordisk Mat. Tidskr.**21**(1973), 31–32. MR**325504** - Robert E. Dressler and Thomas Parker,
*$12,758$*, Math. Comp.**28**(1974), 313–314. MR**327652**, DOI https://doi.org/10.1090/S0025-5718-1974-0327652-1 - Robert E. Dressler, Andrzej Mąkowski, and Thomas Parker,
*Sums of distinct primes from congruence classes modulo $12$*, Math. Comp.**28**(1974), 651–652. MR**340206**, DOI https://doi.org/10.1090/S0025-5718-1974-0340206-6 - R. L. Graham,
*Complete sequences of polynomial values*, Duke Math. J.**31**(1964), 275–285. MR**162759** - R. L. Graham,
*On sums of integers taken from a fixed sequence*, Proceedings of the Washington State University Conference on Number Theory (Washington State Univ., Pullman, Wash., 1971) Dept. Math., Washington State Univ., Pullman, Wash., 1971, pp. 22–40. MR**0319935** - Torleiv Kløve,
*Sums of distinct primes*, Nordisk Mat. Tidskr.**21**(1973), 138–140. MR**342462** - Shen Lin,
*Computer experiments on sequences which form integral bases*, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 365–370. MR**0255507** - A. Mąkowski,
*Partitions into unequal primes*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys.**8**(1960), 125–126 (English, with Russian summary). MR**0117209** - Hans-Egon Richert,
*Über Zerlegungen in paarweise verschiedene Zahlen*, Norsk Mat. Tidsskr.**31**(1949), 120–122 (German). MR**34807** - Hans-Egon Richert,
*Über Zerfällungen in ungleiche Primzahlen*, Math. Z.**52**(1949), 342–343 (German). MR**33856**, DOI https://doi.org/10.1007/BF02230699 - R. Sprague,
*Über Zerlegungen in ungleiche Quadratzahlen*, Math. Z.**51**(1948), 289–290 (German). MR**27285**, DOI https://doi.org/10.1007/BF01181594 - R. Sprague,
*Über Zerlegungen in $n$-te Potenzen mit lauter verschiedenen Grundzahlen*, Math. Z.**51**(1948), 466–468 (German). MR**28892**, DOI https://doi.org/10.1007/BF01185779

Retrieve articles in *Mathematics of Computation*
with MSC:
10A40,
10B35

Retrieve articles in all journals with MSC: 10A40, 10B35

Additional Information

Keywords:
Sums of distinct integers,
sums of powers,
complete sequences,
threshold of completeness

Article copyright:
© Copyright 1975
American Mathematical Society