Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **29** (1975), 1152-1165

DOI:
https://doi.org/10.1090/S0025-5718-75-99674-X

Full-text PDF Free Access

References | Additional Information

- Sol Weintraub,
*A compact prime listing*, Math. Comp.**28**(1974), 855–857. MR**369235**, DOI https://doi.org/10.1090/S0025-5718-1974-0369235-3
SAMUEL YATES, "Prime period lengths," UMT 10, - Daniel Shanks,
*Proof of Krishnamurthy’s conjecture*, J. Recreational Math.**6**(1973), no. 1, 78–79. MR**453621** - Christopher Hooley,
*On Artin’s conjecture*, J. Reine Angew. Math.**225**(1967), 209–220. MR**207630**, DOI https://doi.org/10.1515/crll.1967.225.209 - Daniel Shanks,
*Solved and unsolved problems in number theory. Vol. I*, Spartan Books, Washington, D.C., 1962. MR**0160741** - Daniel Shanks,
*Quadratic residues and the distribution of primes*, Math. Tables Aids Comput.**13**(1959), 272–284. MR**108470**, DOI https://doi.org/10.1090/S0025-5718-1959-0108470-8
ROBERT BAILLIE, - D. H. Lehmer and Emma Lehmer,
*Heuristics, anyone?*, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 202–210. MR**0144868** - A. E. Western and J. C. P. Miller,
*Tables of indices and primitive roots*, Royal Society Mathematical Tables, Vol. 9, Published for the Royal Society at the Cambridge University Press, London, 1968. MR**0246488**
J. C. P. MILLER,

*Math. Comp.*, v. 27, 1973, p. 216. Ch. de la VALLÉE POUSSIN, "Recherches analytiques sur la théorie des nombres premiers, deuxième partie,"

*Ann. Soc. Sci. Bruxelles*, v. 20, part 2, 1896, pp. 281-362. E. V. KRISHNAMURTHY, "An observation concerning the decimal periods of prime reciprocals,"

*J. Recreational Math.*, v. 4, 1969, pp. 212-213.

*Data on Artin’s Conjecture*, UMT 51,

*Math. Comp.*, v. 29, 1975, pp. 1164-1165.

*Primitive Root Counts*, UMT 54,

*Math. Comp.*, v. 26, 1972, p. 1024.

Additional Information

Article copyright:
© Copyright 1975
American Mathematical Society