Reviews and Descriptions of Tables and Books
Journal:
Math. Comp. 29 (1975), 1152-1165
DOI:
https://doi.org/10.1090/S0025-5718-75-99674-X
Full-text PDF Free Access
References | Additional Information
- Sol Weintraub, A compact prime listing, Math. Comp. 28 (1974), 855–857. MR 369235, DOI https://doi.org/10.1090/S0025-5718-1974-0369235-3 SAMUEL YATES, "Prime period lengths," UMT 10, Math. Comp., v. 27, 1973, p. 216. Ch. de la VALLÉE POUSSIN, "Recherches analytiques sur la théorie des nombres premiers, deuxième partie," Ann. Soc. Sci. Bruxelles, v. 20, part 2, 1896, pp. 281-362. E. V. KRISHNAMURTHY, "An observation concerning the decimal periods of prime reciprocals," J. Recreational Math., v. 4, 1969, pp. 212-213.
- Daniel Shanks, Proof of Krishnamurthy’s conjecture, J. Recreational Math. 6 (1973), no. 1, 78–79. MR 453621
- Christopher Hooley, On Artin’s conjecture, J. Reine Angew. Math. 225 (1967), 209–220. MR 207630, DOI https://doi.org/10.1515/crll.1967.225.209
- Daniel Shanks, Solved and unsolved problems in number theory. Vol. I, Spartan Books, Washington, D.C., 1962. MR 0160741
- Daniel Shanks, Quadratic residues and the distribution of primes, Math. Tables Aids Comput. 13 (1959), 272–284. MR 108470, DOI https://doi.org/10.1090/S0025-5718-1959-0108470-8 ROBERT BAILLIE, Data on Artin’s Conjecture, UMT 51, Math. Comp., v. 29, 1975, pp. 1164-1165.
- D. H. Lehmer and Emma Lehmer, Heuristics, anyone?, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 202–210. MR 0144868
- A. E. Western and J. C. P. Miller, Tables of indices and primitive roots, Royal Society Mathematical Tables, Vol. 9, Published for the Royal Society at the Cambridge University Press, London, 1968. MR 0246488 J. C. P. MILLER, Primitive Root Counts, UMT 54, Math. Comp., v. 26, 1972, p. 1024.
Additional Information
Article copyright:
© Copyright 1975
American Mathematical Society