A nearest point algorithm for convex polyhedral cones and applications to positive linear approximation
HTML articles powered by AMS MathViewer
- by Don R. Wilhelmsen PDF
- Math. Comp. 30 (1976), 48-57 Request permission
Abstract:
Suppose K is a convex polyhedral cone in ${E_n}$ and is defined in terms of some generating set $\{ {e_1},{e_2}, \ldots ,{e_N}\}$. A procedure is devised so that, given any point $q \in {E_n}$, the nearest point p in K to q can be found as a positive linear sum of ${N^\ast } \leqslant n$ points from the generating set. The procedure requires at most finitely many linear steps. The algorithm is then applied to find a positive representation \[ Lf = \sum \limits _{i = 1}^{{N^\ast }} {{\lambda _i}f({x_i}),} \quad {\lambda _i} > 0,f \in \Phi ,\] for a positive linear functional L acting on a suitable finite-dimensional function space $\Phi$.References
- Philip J. Davis, A construction of nonnegative approximate quadratures, Math. Comp. 21 (1967), 578–582. MR 222534, DOI 10.1090/S0025-5718-1967-0222534-4
- Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1963. MR 0157156
- A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0327006
- Vladimir Tchakaloff, Formules de cubatures mécaniques à coefficients non négatifs, Bull. Sci. Math. (2) 81 (1957), 123–134 (French). MR 94632
- Don R. Wilhelmsen, Nonnegative cubature on convex sets, SIAM J. Numer. Anal. 11 (1974), 332–346. MR 347062, DOI 10.1137/0711030
- M. Wayne Wilson, A general algorithm for nonnegative quadrature formulas, Math. Comp. 23 (1969), 253–258. MR 242374, DOI 10.1090/S0025-5718-1969-0242374-1
- M. Wayne Wilson, Necessary and sufficient conditions for equidistant quadrature formula, SIAM J. Numer. Anal. 7 (1970), 134–141. MR 282530, DOI 10.1137/0707009
- Philip Wolfe, Finding the nearest point in a polytope, Math. Programming 11 (1976), no. 2, 128–149. MR 452683, DOI 10.1007/BF01580381
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp. 30 (1976), 48-57
- MSC: Primary 52A25; Secondary 65D99
- DOI: https://doi.org/10.1090/S0025-5718-1976-0394439-5
- MathSciNet review: 0394439