Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Nonelliptic approximation of a class of partial differential equations with Neumann boundary condition
HTML articles powered by AMS MathViewer

by V. Girault PDF
Math. Comp. 30 (1976), 68-91 Request permission

Abstract:

This paper is devoted to the numerical resolution of a class of linear partial differential equations with an inhomogeneous Neumann boundary condition. A first order quadrilateral finite element method is used, together with a one-point integration formula. The resulting scheme is simple and widely used but its theory is not classical, in a sense described as "nonelliptic". An important boundary value theorem is derived, in order to handle the Neumann condition. An error bound shows that the scheme is of order one.
References
  • J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112–124. MR 263214, DOI 10.1137/0707006
  • Jean Céa, Approximation variationnelle des problèmes aux limites, Ann. Inst. Fourier (Grenoble) 14 (1964), no. fasc. 2, 345–444 (French). MR 174846
  • P. G. Ciarlet and P.-A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 409–474. MR 0421108
  • V. Girault, Theory of a finite difference method on irregular networks, SIAM J. Numer. Anal. 11 (1974), 260–282. MR 431730, DOI 10.1137/0711026
  • C. W. HIRT, A. A. AMSDEN & J. L. COOK, "An arbitrary Lagrangian-Eulerian computing method for all flow speeds," J. Computational Phys., v. 14, 1974, pp. 227-253.
  • J. L. Lions, Problèmes aux limites en théorie des distributions, Acta Math. 94 (1955), 13–153 (French). MR 75425, DOI 10.1007/BF02392490
  • Jacques L. Lions, Problèmes aux limites dans les équations aux dérivées partielles, Séminaire de Mathématiques Supérieures, No. 1 (Été, vol. 1962, Les Presses de l’Université de Montréal, Montreal, Que., 1965 (French). Deuxième édition. MR 0251372
  • J.-L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Die Grundlehren der mathematischen Wissenschaften, Band 111, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961 (French). MR 0153974
  • Gilbert Strang, Variational crimes in the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 689–710. MR 0413554
  • Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR 0443377
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65N30
  • Retrieve articles in all journals with MSC: 65N30
Additional Information
  • © Copyright 1976 American Mathematical Society
  • Journal: Math. Comp. 30 (1976), 68-91
  • MSC: Primary 65N30
  • DOI: https://doi.org/10.1090/S0025-5718-1976-0395266-5
  • MathSciNet review: 0395266