Decision problems for HNN groups and vector addition systems
HTML articles powered by AMS MathViewer
- by Michael Anshel PDF
- Math. Comp. 30 (1976), 154-156 Request permission
Abstract:
Our purpose is to show the equivalence of the conjugacy problem for certain HNN extensions of the infinite cyclic groups and the reachability problem for the class of self-dual vector addition systems. In addition, we extend an endomorphism theorem of the authorβs to a homomorphism theorem and indicate a problem related to the isomorphism problem for a class of HNN groups.References
- Michael Anshel, The endomorphisms of certain one-relator groups and the generalized Hopfian problem, Bull. Amer. Math. Soc. 77 (1971), 348β350. MR 272876, DOI 10.1090/S0002-9904-1971-12688-5
- Michael Anshel, Non-Hopfian groups with fully invariant kernels. I, Trans. Amer. Math. Soc. 170 (1972), 231β237. MR 304491, DOI 10.1090/S0002-9947-1972-0304491-3
- Michael Anshel, Non-Hopfian groups with fully invariant kernels. II, J. Algebra 24 (1973), 473β485. MR 313406, DOI 10.1016/0021-8693(73)90121-X
- Michael Anshel, Conjugate powers in HNN groups, Proc. Amer. Math. Soc. 54 (1976), 19β23. MR 393249, DOI 10.1090/S0002-9939-1976-0393249-4
- Michael Anshel and Peter Stebe, The solvability of the conjugacy problem for certain HNN groups, Bull. Amer. Math. Soc. 80 (1974), 266β270. MR 419615, DOI 10.1090/S0002-9904-1974-13455-5 H. G. BAKER, JR, Rabinβs Proof of the Undecidability of the Reachability Set Inclusion Problem of Vector Addition Systems, CSG Memo 79, Project MAC, M.I.T., July 1973.
- Gilbert Baumslag, Residually finite one-relator groups, Bull. Amer. Math. Soc. 73 (1967), 618β620. MR 212078, DOI 10.1090/S0002-9904-1967-11799-3
- Gilbert Baumslag and Donald Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199β201. MR 142635, DOI 10.1090/S0002-9904-1962-10745-9
- John L. Britton, The word problem, Ann. of Math. (2) 77 (1963), 16β32. MR 168633, DOI 10.2307/1970200
- Donald J. Collins, Recursively enumerable degrees and the conjugacy problem, Acta Math. 122 (1969), 115β160. MR 242671, DOI 10.1007/BF02392008 G. FROBENIUS, "Theorie der linearen Formen mit gunzen Koeffizienten," J. Reine Angew. Math., v. 86, 1878, pp. 146-208.
- Seymour Ginsburg, The mathematical theory of context-free languages, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0211815 M. HACK, Decision Problems for Petri Nets and Vector Addition Systems, CSC Memo 95, Project MAC, M.I.T., March 1974.
- Richard M. Karp and Raymond E. Miller, Parallel program schemata, J. Comput. System Sci. 3 (1969), 147β195. MR 246720, DOI 10.1016/S0022-0000(69)80011-5
- Richard M. Karp, Raymond E. Miller, and Shmuel Winograd, The organization of computations for uniform recurrence equations, J. Assoc. Comput. Mach. 14 (1967), 563β590. MR 234604, DOI 10.1145/321406.321418
- A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227β255. MR 260879, DOI 10.1090/S0002-9947-1970-0260879-9
- A. Karrass and D. Solitar, Subgroups of $\textrm {HNN}$ groups and groups with one defining relation, Canadian J. Math. 23 (1971), 627β643. MR 301102, DOI 10.4153/CJM-1971-070-x
- Jan van Leeuwen, A partial solution to the reachability-problem for vector-addition systems, Sixth Annual ACM Symposium on Theory of Computing (Seattle, Wash., 1974), Assoc. Comput. Mach., New York, 1974, pp.Β 303β309. MR 0413611
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 0207802
- Charles F. Miller III, On group-theoretic decision problems and their classification, Annals of Mathematics Studies, No. 68, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0310044
- B. O. Nash, Reachability problems in vector addition systems, Amer. Math. Monthly 80 (1973), 292β295. MR 319420, DOI 10.2307/2318455
- Alfred Pietrowski, The isomorphism problem for one-relator groups with non-trivial centre, Math. Z. 136 (1974), 95β106. MR 349851, DOI 10.1007/BF01214345
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp. 30 (1976), 154-156
- MSC: Primary 20F10; Secondary 02G05, 68A10
- DOI: https://doi.org/10.1090/S0025-5718-1976-0396766-4
- MathSciNet review: 0396766