## Generation of conjugate directions for unconstrained minimization without derivatives

HTML articles powered by AMS MathViewer

- by Larry Nazareth PDF
- Math. Comp.
**30**(1976), 115-131 Request permission

## Abstract:

We analyze a technique for unconstrained minimization without derivatives. This stems from two theorems proved by M. J. D. Powell. A particular version, which we consider in detail, is related to the Jacobi process for finding the eigensystem of a symmetric matrix, and the two processes, although different, help to illuminate one another. We study convergence of the search directions to mutual conjugacy, cases when cycling occurs and identify a broad class of ’cyclic patterns’ for which convergence to mutual conjugacy is proven.## References

- M. J. D. Powell,
*An efficient method for finding the minimum of a function of several variables without calculating derivatives*, Comput. J.**7**(1964), 155–162. MR**187376**, DOI 10.1093/comjnl/7.2.155 - Willard I. Zangwill,
*Minimizing a function without calculating derivatives*, Comput. J.**10**(1967), 293–296. MR**234614**, DOI 10.1093/comjnl/10.3.293 - Richard P. Brent,
*Algorithms for minimization without derivatives*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR**0339493**
N. W. BRODLIE, - Eldon R. Hansen,
*On cyclic Jacobi methods*, J. Soc. Indust. Appl. Math.**11**(1963), 448–459. MR**156458**
J. L. NAZARETH, - J. H. Wilkinson,
*Note on the quadratic convergence of the cyclic Jacobi process*, Numer. Math.**4**(1962), 296–300. MR**146954**, DOI 10.1007/BF01386321 - J. H. Wilkinson,
*The algebraic eigenvalue problem*, Clarendon Press, Oxford, 1965. MR**0184422** - G. E. Forsythe and P. Henrici,
*The cyclic Jacobi method for computing the principal values of a complex matrix*, Trans. Amer. Math. Soc.**94**(1960), 1–23. MR**109825**, DOI 10.1090/S0002-9947-1960-0109825-2 - Peter Henrici,
*On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing eigenvalues of Hermitian matrices*, J. Soc. Indust. Appl. Math.**6**(1958), 144–162. MR**95582** - H. P. M. van Kempen,
*On the convergence of the classical Jacobi method for real symmetric matrices with non-distinct eigenvalues*, Numer. Math.**9**(1966), 11–18. MR**202290**, DOI 10.1007/BF02165224 - Joel N. Franklin,
*Matrix theory*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968. MR**0237517**

*A New Method for Unconstrained Minimization without Evaluating Derivatives*, IBM Report UKSC-0019-0019, IBM, Peterlee, United Kingdom, 1972. M. J. D. POWELL,

*Unconstrained Minimization Algorithms Without Computation of Derivatives*, UK. A. E. A. Harwell Report HL72/1713, 1972. J. L. NAZARETH, Part I:

*Unified Approach to Unconstrained Minimization*. Part II:

*Generation of Conjugate Directions for Unconstrained Minimization Without Derivatives*, Dept. of Computer Science, Univ. of California, Berkeley, Rep. No. 23, 1973.

*On the Convergence of the Cyclic Jacobi Process*, Argonne National Lab. Tech. Memo, ANL-AMD, 1974.

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp.
**30**(1976), 115-131 - MSC: Primary 65K05
- DOI: https://doi.org/10.1090/S0025-5718-1976-0398100-2
- MathSciNet review: 0398100